Loading…
Low-temperature nitriding of 38CrMoAl steel with a nanostructured surface layer induced by surface mechanical attrition treatment
A nanocrystalline surface layer was fabricated on a 38CrMoAl steel plate by means of a surface mechanical attrition treatment (SMAT). The average grain size in the top surface layer (10 μm thick) is about 10 nm, and the grain size stability can be maintained up to 450 °C. The effect of the surface n...
Saved in:
Published in: | Surface & coatings technology 2008-07, Vol.202 (20), p.4957-4963 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A nanocrystalline surface layer was fabricated on a 38CrMoAl steel plate by means of a surface mechanical attrition treatment (SMAT). The average grain size in the top surface layer (10 μm thick) is about 10 nm, and the grain size stability can be maintained up to 450 °C. The effect of the surface nanocrystalline layer on the gas nitriding process at a lower temperature was investigated by using structural analysis and wear property measurements. The surface nanocrystallization evidently enhances nitriding kinetics and promotes the formation of an ultrafine polycrystalline compound layer. The results of the investigation showed that this new gas nitriding technique can effectively increase the hardness and wear resistance of the resulting surface layer in comparison with conventional nitriding, demonstrating a significant advancement for materials processing. |
---|---|
ISSN: | 0257-8972 1879-3347 |
DOI: | 10.1016/j.surfcoat.2008.04.085 |