Loading…

A multi-resolution approach for line-edge roughness detection

A wavelet-based line-edge detection framework is presented that proves to be solely image-dependent. In this analysis, surfaces are considered as a combination of an underlying surface structure and a surface detail, corresponding to low-frequency and high-frequency features, respectively. Through t...

Full description

Saved in:
Bibliographic Details
Published in:Microelectronic engineering 2009-03, Vol.86 (3), p.340-351
Main Authors: Sun, Wei, Mukherjee, Rajib, Stroeve, Pieter, Palazoglu, Ahmet, Romagnoli, Jose A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c358t-e4dad4ec201820ab8ae100e0c928899abb57541c860c676ab58a21928e0ef4f53
cites cdi_FETCH-LOGICAL-c358t-e4dad4ec201820ab8ae100e0c928899abb57541c860c676ab58a21928e0ef4f53
container_end_page 351
container_issue 3
container_start_page 340
container_title Microelectronic engineering
container_volume 86
creator Sun, Wei
Mukherjee, Rajib
Stroeve, Pieter
Palazoglu, Ahmet
Romagnoli, Jose A.
description A wavelet-based line-edge detection framework is presented that proves to be solely image-dependent. In this analysis, surfaces are considered as a combination of an underlying surface structure and a surface detail, corresponding to low-frequency and high-frequency features, respectively. Through the multi-scale analysis offered by wavelet decomposition, the underlying surface structure is extracted and used to define the line-edge searching region, which, in turn, helps characterize the line-edge roughness (LER), providing valuable information for the evaluation of device fabrication and performance. We focus on exploring the optimal wavelet decomposition, to better separate the underlying structure and the surface detail, using a number of metrics including the Shannon’s entropy, k-means clustering and the flatness factor. The impact of different wavelet functions and resolution levels on line-edge roughness characterization is discussed. An SEM image of a plane diffraction grating is studied to demonstrate the application of the proposed framework.
doi_str_mv 10.1016/j.mee.2008.11.001
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_33768970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0167931708004784</els_id><sourcerecordid>33768970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-e4dad4ec201820ab8ae100e0c928899abb57541c860c676ab58a21928e0ef4f53</originalsourceid><addsrcrecordid>eNp9kD1PwzAQhi0EEqXwA9iywJZwl8SJI8RQVeVDqsQCs-U4l9ZVEhc7QeLf46oVI9MN97z38TB2i5AgYPGwS3qiJAUQCWICgGdshqLMYs4Lcc5mgSnjKsPykl15vwtAkYOYsadF1E_daGJH3nbTaOwQqf3eWaW3UWtd1JmBYmo2FDk7bbYDeR81NJI-oNfsolWdp5tTnbPP59XH8jVev7-8LRfrWGdcjDHljWpy0imgSEHVQhECEOgqFaKqVF3zkueoRQG6KAtVc6FSDE0CavOWZ3N2f5wbDvuayI-yN15T16mB7ORllpWFqEoIIB5B7az3jlq5d6ZX7kciyIMouZNBlDyIkogyeAiZu9Nw5bXqWqcGbfxfMMVU8CArcI9HjsKn34ac9NrQoKkxLuiQjTX_bPkFuxN9TQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33768970</pqid></control><display><type>article</type><title>A multi-resolution approach for line-edge roughness detection</title><source>ScienceDirect Journals</source><creator>Sun, Wei ; Mukherjee, Rajib ; Stroeve, Pieter ; Palazoglu, Ahmet ; Romagnoli, Jose A.</creator><creatorcontrib>Sun, Wei ; Mukherjee, Rajib ; Stroeve, Pieter ; Palazoglu, Ahmet ; Romagnoli, Jose A.</creatorcontrib><description>A wavelet-based line-edge detection framework is presented that proves to be solely image-dependent. In this analysis, surfaces are considered as a combination of an underlying surface structure and a surface detail, corresponding to low-frequency and high-frequency features, respectively. Through the multi-scale analysis offered by wavelet decomposition, the underlying surface structure is extracted and used to define the line-edge searching region, which, in turn, helps characterize the line-edge roughness (LER), providing valuable information for the evaluation of device fabrication and performance. We focus on exploring the optimal wavelet decomposition, to better separate the underlying structure and the surface detail, using a number of metrics including the Shannon’s entropy, k-means clustering and the flatness factor. The impact of different wavelet functions and resolution levels on line-edge roughness characterization is discussed. An SEM image of a plane diffraction grating is studied to demonstrate the application of the proposed framework.</description><identifier>ISSN: 0167-9317</identifier><identifier>EISSN: 1873-5568</identifier><identifier>DOI: 10.1016/j.mee.2008.11.001</identifier><identifier>CODEN: MIENEF</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Exact sciences and technology ; Flatness factor ; Fundamental areas of phenomenology (including applications) ; Gratings ; Instruments, apparatus, components and techniques common to several branches of physics and astronomy ; k-means clustering ; Line-edge roughness (LER) ; Optical elements, devices, and systems ; Optics ; Physics ; Scanning electron microscopy (SEM) ; Scanning probe microscopes, components and techniques ; Shannon’s entropy ; Wavelet decomposition</subject><ispartof>Microelectronic engineering, 2009-03, Vol.86 (3), p.340-351</ispartof><rights>2008 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-e4dad4ec201820ab8ae100e0c928899abb57541c860c676ab58a21928e0ef4f53</citedby><cites>FETCH-LOGICAL-c358t-e4dad4ec201820ab8ae100e0c928899abb57541c860c676ab58a21928e0ef4f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21285640$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Sun, Wei</creatorcontrib><creatorcontrib>Mukherjee, Rajib</creatorcontrib><creatorcontrib>Stroeve, Pieter</creatorcontrib><creatorcontrib>Palazoglu, Ahmet</creatorcontrib><creatorcontrib>Romagnoli, Jose A.</creatorcontrib><title>A multi-resolution approach for line-edge roughness detection</title><title>Microelectronic engineering</title><description>A wavelet-based line-edge detection framework is presented that proves to be solely image-dependent. In this analysis, surfaces are considered as a combination of an underlying surface structure and a surface detail, corresponding to low-frequency and high-frequency features, respectively. Through the multi-scale analysis offered by wavelet decomposition, the underlying surface structure is extracted and used to define the line-edge searching region, which, in turn, helps characterize the line-edge roughness (LER), providing valuable information for the evaluation of device fabrication and performance. We focus on exploring the optimal wavelet decomposition, to better separate the underlying structure and the surface detail, using a number of metrics including the Shannon’s entropy, k-means clustering and the flatness factor. The impact of different wavelet functions and resolution levels on line-edge roughness characterization is discussed. An SEM image of a plane diffraction grating is studied to demonstrate the application of the proposed framework.</description><subject>Exact sciences and technology</subject><subject>Flatness factor</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Gratings</subject><subject>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</subject><subject>k-means clustering</subject><subject>Line-edge roughness (LER)</subject><subject>Optical elements, devices, and systems</subject><subject>Optics</subject><subject>Physics</subject><subject>Scanning electron microscopy (SEM)</subject><subject>Scanning probe microscopes, components and techniques</subject><subject>Shannon’s entropy</subject><subject>Wavelet decomposition</subject><issn>0167-9317</issn><issn>1873-5568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kD1PwzAQhi0EEqXwA9iywJZwl8SJI8RQVeVDqsQCs-U4l9ZVEhc7QeLf46oVI9MN97z38TB2i5AgYPGwS3qiJAUQCWICgGdshqLMYs4Lcc5mgSnjKsPykl15vwtAkYOYsadF1E_daGJH3nbTaOwQqf3eWaW3UWtd1JmBYmo2FDk7bbYDeR81NJI-oNfsolWdp5tTnbPP59XH8jVev7-8LRfrWGdcjDHljWpy0imgSEHVQhECEOgqFaKqVF3zkueoRQG6KAtVc6FSDE0CavOWZ3N2f5wbDvuayI-yN15T16mB7ORllpWFqEoIIB5B7az3jlq5d6ZX7kciyIMouZNBlDyIkogyeAiZu9Nw5bXqWqcGbfxfMMVU8CArcI9HjsKn34ac9NrQoKkxLuiQjTX_bPkFuxN9TQ</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Sun, Wei</creator><creator>Mukherjee, Rajib</creator><creator>Stroeve, Pieter</creator><creator>Palazoglu, Ahmet</creator><creator>Romagnoli, Jose A.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20090301</creationdate><title>A multi-resolution approach for line-edge roughness detection</title><author>Sun, Wei ; Mukherjee, Rajib ; Stroeve, Pieter ; Palazoglu, Ahmet ; Romagnoli, Jose A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-e4dad4ec201820ab8ae100e0c928899abb57541c860c676ab58a21928e0ef4f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Exact sciences and technology</topic><topic>Flatness factor</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Gratings</topic><topic>Instruments, apparatus, components and techniques common to several branches of physics and astronomy</topic><topic>k-means clustering</topic><topic>Line-edge roughness (LER)</topic><topic>Optical elements, devices, and systems</topic><topic>Optics</topic><topic>Physics</topic><topic>Scanning electron microscopy (SEM)</topic><topic>Scanning probe microscopes, components and techniques</topic><topic>Shannon’s entropy</topic><topic>Wavelet decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Wei</creatorcontrib><creatorcontrib>Mukherjee, Rajib</creatorcontrib><creatorcontrib>Stroeve, Pieter</creatorcontrib><creatorcontrib>Palazoglu, Ahmet</creatorcontrib><creatorcontrib>Romagnoli, Jose A.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Microelectronic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Wei</au><au>Mukherjee, Rajib</au><au>Stroeve, Pieter</au><au>Palazoglu, Ahmet</au><au>Romagnoli, Jose A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A multi-resolution approach for line-edge roughness detection</atitle><jtitle>Microelectronic engineering</jtitle><date>2009-03-01</date><risdate>2009</risdate><volume>86</volume><issue>3</issue><spage>340</spage><epage>351</epage><pages>340-351</pages><issn>0167-9317</issn><eissn>1873-5568</eissn><coden>MIENEF</coden><abstract>A wavelet-based line-edge detection framework is presented that proves to be solely image-dependent. In this analysis, surfaces are considered as a combination of an underlying surface structure and a surface detail, corresponding to low-frequency and high-frequency features, respectively. Through the multi-scale analysis offered by wavelet decomposition, the underlying surface structure is extracted and used to define the line-edge searching region, which, in turn, helps characterize the line-edge roughness (LER), providing valuable information for the evaluation of device fabrication and performance. We focus on exploring the optimal wavelet decomposition, to better separate the underlying structure and the surface detail, using a number of metrics including the Shannon’s entropy, k-means clustering and the flatness factor. The impact of different wavelet functions and resolution levels on line-edge roughness characterization is discussed. An SEM image of a plane diffraction grating is studied to demonstrate the application of the proposed framework.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.mee.2008.11.001</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0167-9317
ispartof Microelectronic engineering, 2009-03, Vol.86 (3), p.340-351
issn 0167-9317
1873-5568
language eng
recordid cdi_proquest_miscellaneous_33768970
source ScienceDirect Journals
subjects Exact sciences and technology
Flatness factor
Fundamental areas of phenomenology (including applications)
Gratings
Instruments, apparatus, components and techniques common to several branches of physics and astronomy
k-means clustering
Line-edge roughness (LER)
Optical elements, devices, and systems
Optics
Physics
Scanning electron microscopy (SEM)
Scanning probe microscopes, components and techniques
Shannon’s entropy
Wavelet decomposition
title A multi-resolution approach for line-edge roughness detection
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A37%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20multi-resolution%20approach%20for%20line-edge%20roughness%20detection&rft.jtitle=Microelectronic%20engineering&rft.au=Sun,%20Wei&rft.date=2009-03-01&rft.volume=86&rft.issue=3&rft.spage=340&rft.epage=351&rft.pages=340-351&rft.issn=0167-9317&rft.eissn=1873-5568&rft.coden=MIENEF&rft_id=info:doi/10.1016/j.mee.2008.11.001&rft_dat=%3Cproquest_cross%3E33768970%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c358t-e4dad4ec201820ab8ae100e0c928899abb57541c860c676ab58a21928e0ef4f53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=33768970&rft_id=info:pmid/&rfr_iscdi=true