Loading…

Mechanical properties of sputtered silicon oxynitride films by nanoindentation

Silicon oxynitride (SiON) has received a great deal of attention in micro-electro-mechanical system (MEMS) integration due to its composition-dependent tunability in optical, electronic and mechanical properties. In this work, silicon oxynitride films with different oxygen and nitrogen content were...

Full description

Saved in:
Bibliographic Details
Published in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2008-08, Vol.489 (1), p.294-301
Main Authors: Liu, Yan, Lin, I.-Kuan, Zhang, Xin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Silicon oxynitride (SiON) has received a great deal of attention in micro-electro-mechanical system (MEMS) integration due to its composition-dependent tunability in optical, electronic and mechanical properties. In this work, silicon oxynitride films with different oxygen and nitrogen content were deposited by RF magnetron sputtering. Energy dispersive X-ray (EDX) spectroscopy and Fourier-transform infrared (FT-IR) spectroscopy were employed to characterize the SiON films with respect to stoichiometric composition and atomic bonding structure. Time-dependent plastic deformation (creep) of SiON films were investigated by depth-sensing nanoindentation at room temperature. Young's modulus and indentation-hardness were found correlated with the nitrogen/oxygen ratio in SiON films. Results from nanoindentation creep indicated that plastic flow was less homogenous with increasing nitrogen content in film composition. Correspondingly, a deformation mechanism based on atomic bonding structure and shear transformation zone (STZ) plasticity theory was proposed to interpret creep behaviors of sputtered SiON films.
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2008.01.063