Loading…
Slip band formation and mobile dislocation density generation in high rate deformation of single fcc crystals
The mechanisms for the nucleation, thickening, and growth of crystallographic slip bands from the sub-nanoscale to the microscale are studied using three-dimensional dislocation dynamics. In the simulations, a single fcc crystal is strained along the [111] direction at three different high strain ra...
Saved in:
Published in: | Philosophical magazine (Abingdon, England) England), 2008-03, Vol.88 (9), p.1321-1343 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The mechanisms for the nucleation, thickening, and growth of crystallographic slip bands from the sub-nanoscale to the microscale are studied using three-dimensional dislocation dynamics. In the simulations, a single fcc crystal is strained along the [111] direction at three different high strain rates: 10
4
, 10
5
, and 10
6
s
− 1
. Dislocation inertia and drag are included and the simulations were conducted with and without cross-slip. With cross-slip, slip bands form parallel to active (111) planes as a result of double cross-slip onto fresh glide planes within localized regions of the crystal. In this manner, fine nanoscale slip bands nucleate throughout the crystal, and, with further straining, build up to larger bands by a proposed self-replicating mechanism. It is shown that slip bands are regions of concentrated glide, high dislocation multiplication rates, and high dislocation velocities. Cross-slip increases in activity proportionally with the product of the total dislocation density and the square root of the applied stress. Effects of cross-slip on work hardening are attributed to the role of cross-slip on mobile dislocation generation, rather than slip band formation. A new dislocation density evolution law is presented for high rates, which introduces the mobile density, a state variable that is missing in most constitutive laws. |
---|---|
ISSN: | 1478-6435 1478-6443 |
DOI: | 10.1080/14786430802129833 |