Loading…
Effects of a Hindered Amine Stabilizer (HAS) on radiolytic and thermal stability of poly(methyl methacrylate)
Commercial Poly(methyl methacrylate) (PMMA) containing Tinuvin 622, a Hindered Amine Stabilizer (HAS), in 0.3% (wt/wt) concentration was investigated. The samples were irradiated with gamma radiation (⁶⁰Co) at room temperature in air. The viscosity-average molecular weight (Mv) was analyzed by visco...
Saved in:
Published in: | Journal of applied polymer science 2008-10, Vol.110 (1), p.401-407 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Commercial Poly(methyl methacrylate) (PMMA) containing Tinuvin 622, a Hindered Amine Stabilizer (HAS), in 0.3% (wt/wt) concentration was investigated. The samples were irradiated with gamma radiation (⁶⁰Co) at room temperature in air. The viscosity-average molecular weight (Mv) was analyzed by viscosity technique. Both control PMMA (without HAS) and PMMA + 622 (with HAS) showed a decrease in molecular weight with the increase in dose, reflecting the random scissions that occurred in the main chain. The G value (scissions/100 eV of energy transferred to the system) was also obtained by viscosity analysis. G value results showed that the addition of Tinuvin 622 into the PMMA matrix significantly decreased the number of scissions/100 eV at dose range of 0-60 kGy. Analysis of infrared spectra showed a decrease in the carbonyl index (CI) in irradiated samples. However the CI decrease was found lower for PMMA + 622 than for control PMMA sample. Thermogravimetric analysis (TGA) revealed that maximum decomposition temperature of additive PMMA is 42°C higher than control PMMA for unirradiated system. On the other hand this difference is not significant in irradiated systems at 60-kGy irradiation dose. The activation energy of the thermal degradation of PMMA was 165 kJ/mol, this activation energy increased 60 kJ/mol when Tinuvin 622 was added to PMMA matrix. Therefore Tinuvin 622 is a suitable radiostabilizing agent for commercial PMMA in a 0-60 kGy dose interval. |
---|---|
ISSN: | 0021-8995 1097-4628 |
DOI: | 10.1002/app.28465 |