Loading…
Height-selective etching for regrowth of self-aligned contacts using MBE
Advanced III–V transistors require unprecedented low-resistance contacts in order to simultaneously scale bandwidth, f max and f t with the physical active region [M.J.W. Rodwell, M. Le, B. Brar, in: Proceedings of the IEEE, 96, 2008, p. 748]. Low-resistance contacts have been previously demonstrate...
Saved in:
Published in: | Journal of crystal growth 2009-03, Vol.311 (7), p.1984-1987 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Advanced III–V transistors require unprecedented low-resistance contacts in order to simultaneously scale bandwidth,
f
max and
f
t with the physical active region [M.J.W. Rodwell, M. Le, B. Brar, in: Proceedings of the IEEE, 96, 2008, p. 748]. Low-resistance contacts have been previously demonstrated using molecular beam epitaxy (MBE), which provides active doping above 4×10
19
cm
−3 and permits in-situ metal deposition for the lowest resistances [U. Singisetti, M.A. Wistey, J.D. Zimmerman, B.J. Thibeault, M.J.W. Rodwell, A.C. Gossard, S.R. Bank, Appl. Phys. Lett., submitted]. But MBE is a blanket deposition technique, and applying MBE regrowth to deep-submicron lateral device dimensions is difficult even with advanced lithography techniques. We present a simple method for selectively etching undesired regrowth from the gate or mesa of a III–V MOSFET or laser, resulting in self-aligned source/drain contacts regardless of the device dimensions. This turns MBE into an effectively selective area growth technique. |
---|---|
ISSN: | 0022-0248 1873-5002 |
DOI: | 10.1016/j.jcrysgro.2008.11.012 |