Loading…

On fault isolation by neural-networks-based parameter estimation techniques

: The aim of the work is to exploit some aspects of functional approximation techniques in parameter estimation procedures applied on fault detection and isolation tasks using backpropagation neural networks as functional approximation devices. The major focus of this paper deals with the strategy u...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems 2007-02, Vol.24 (1), p.47-63
Main Author: Garcia, Ramon Ferreiro
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4090-308dea191aa1245fcafa984161abb2e4a8c2ec20563cbdae8efa9fa2813791b93
cites cdi_FETCH-LOGICAL-c4090-308dea191aa1245fcafa984161abb2e4a8c2ec20563cbdae8efa9fa2813791b93
container_end_page 63
container_issue 1
container_start_page 47
container_title Expert systems
container_volume 24
creator Garcia, Ramon Ferreiro
description : The aim of the work is to exploit some aspects of functional approximation techniques in parameter estimation procedures applied on fault detection and isolation tasks using backpropagation neural networks as functional approximation devices. The major focus of this paper deals with the strategy used in the data selection task as applied to the determination of non‐conventional process parameters, such as performance or process‐efficiency indexes, which are difficult to acquire by direct measurement. The implementation and validation procedure on a real case study is carried out with the aid of the facilities supplied by commercial neural networks toolboxes, which manage databases, neural network structures and highly efficient training algorithms.
doi_str_mv 10.1111/j.1468-0394.2007.00420.x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34276070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1199102511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4090-308dea191aa1245fcafa984161abb2e4a8c2ec20563cbdae8efa9fa2813791b93</originalsourceid><addsrcrecordid>eNqNkD1v2zAQhomgAeIm_Q9Ch25SjhTNj6FDazhOkaAZkqDJRJzkEypbllxSQux_H6oqMnQKlyNw73PkPYwlHDIez-Um41KZFHIrMwGgMwApIDucsNlb4wObgVAqlVrAGfsYwgYAuNZqxm7u2qTCoemTOnQN9nXXJsUxaWnw2KQt9S-d34a0wEDrZI8ed9STTyj09W5K91T-bus_A4ULdlphE-jTv3rOHq-WD4vr9PZu9WPx7TYtJVhIczBrQm45IhdyXpVYoTWSK45FIUiiKQWVAuYqL4s1kqHYr1AYnmvLC5ufsy_T3L3vxnd7t6tDSU2DLXVDcLkUWoGGGPz8X3DTDb6Nf3PcKiuM0CaGzBQqfReCp8rtfdzNHx0HNyp2GzeadKNJNyp2fxW7Q0S_TuhL3dDx3ZxbPt0_x1vk04mvQ0-HNx791imd67n79XMVp8kbu5DKfc9fAWQfkdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196928278</pqid></control><display><type>article</type><title>On fault isolation by neural-networks-based parameter estimation techniques</title><source>EBSCOhost Business Source Ultimate</source><source>Wiley</source><creator>Garcia, Ramon Ferreiro</creator><creatorcontrib>Garcia, Ramon Ferreiro</creatorcontrib><description>: The aim of the work is to exploit some aspects of functional approximation techniques in parameter estimation procedures applied on fault detection and isolation tasks using backpropagation neural networks as functional approximation devices. The major focus of this paper deals with the strategy used in the data selection task as applied to the determination of non‐conventional process parameters, such as performance or process‐efficiency indexes, which are difficult to acquire by direct measurement. The implementation and validation procedure on a real case study is carried out with the aid of the facilities supplied by commercial neural networks toolboxes, which manage databases, neural network structures and highly efficient training algorithms.</description><identifier>ISSN: 0266-4720</identifier><identifier>EISSN: 1468-0394</identifier><identifier>DOI: 10.1111/j.1468-0394.2007.00420.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Approximation ; backpropagation ; Estimating techniques ; Expert systems ; fault detection ; fault isolation ; functional approximation ; Neural networks ; non-linear systems ; Parameter estimation ; residual generation ; Studies</subject><ispartof>Expert systems, 2007-02, Vol.24 (1), p.47-63</ispartof><rights>2007 Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4090-308dea191aa1245fcafa984161abb2e4a8c2ec20563cbdae8efa9fa2813791b93</citedby><cites>FETCH-LOGICAL-c4090-308dea191aa1245fcafa984161abb2e4a8c2ec20563cbdae8efa9fa2813791b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Garcia, Ramon Ferreiro</creatorcontrib><title>On fault isolation by neural-networks-based parameter estimation techniques</title><title>Expert systems</title><description>: The aim of the work is to exploit some aspects of functional approximation techniques in parameter estimation procedures applied on fault detection and isolation tasks using backpropagation neural networks as functional approximation devices. The major focus of this paper deals with the strategy used in the data selection task as applied to the determination of non‐conventional process parameters, such as performance or process‐efficiency indexes, which are difficult to acquire by direct measurement. The implementation and validation procedure on a real case study is carried out with the aid of the facilities supplied by commercial neural networks toolboxes, which manage databases, neural network structures and highly efficient training algorithms.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>backpropagation</subject><subject>Estimating techniques</subject><subject>Expert systems</subject><subject>fault detection</subject><subject>fault isolation</subject><subject>functional approximation</subject><subject>Neural networks</subject><subject>non-linear systems</subject><subject>Parameter estimation</subject><subject>residual generation</subject><subject>Studies</subject><issn>0266-4720</issn><issn>1468-0394</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNkD1v2zAQhomgAeIm_Q9Ch25SjhTNj6FDazhOkaAZkqDJRJzkEypbllxSQux_H6oqMnQKlyNw73PkPYwlHDIez-Um41KZFHIrMwGgMwApIDucsNlb4wObgVAqlVrAGfsYwgYAuNZqxm7u2qTCoemTOnQN9nXXJsUxaWnw2KQt9S-d34a0wEDrZI8ed9STTyj09W5K91T-bus_A4ULdlphE-jTv3rOHq-WD4vr9PZu9WPx7TYtJVhIczBrQm45IhdyXpVYoTWSK45FIUiiKQWVAuYqL4s1kqHYr1AYnmvLC5ufsy_T3L3vxnd7t6tDSU2DLXVDcLkUWoGGGPz8X3DTDb6Nf3PcKiuM0CaGzBQqfReCp8rtfdzNHx0HNyp2GzeadKNJNyp2fxW7Q0S_TuhL3dDx3ZxbPt0_x1vk04mvQ0-HNx791imd67n79XMVp8kbu5DKfc9fAWQfkdA</recordid><startdate>200702</startdate><enddate>200702</enddate><creator>Garcia, Ramon Ferreiro</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200702</creationdate><title>On fault isolation by neural-networks-based parameter estimation techniques</title><author>Garcia, Ramon Ferreiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4090-308dea191aa1245fcafa984161abb2e4a8c2ec20563cbdae8efa9fa2813791b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>backpropagation</topic><topic>Estimating techniques</topic><topic>Expert systems</topic><topic>fault detection</topic><topic>fault isolation</topic><topic>functional approximation</topic><topic>Neural networks</topic><topic>non-linear systems</topic><topic>Parameter estimation</topic><topic>residual generation</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia, Ramon Ferreiro</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia, Ramon Ferreiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On fault isolation by neural-networks-based parameter estimation techniques</atitle><jtitle>Expert systems</jtitle><date>2007-02</date><risdate>2007</risdate><volume>24</volume><issue>1</issue><spage>47</spage><epage>63</epage><pages>47-63</pages><issn>0266-4720</issn><eissn>1468-0394</eissn><abstract>: The aim of the work is to exploit some aspects of functional approximation techniques in parameter estimation procedures applied on fault detection and isolation tasks using backpropagation neural networks as functional approximation devices. The major focus of this paper deals with the strategy used in the data selection task as applied to the determination of non‐conventional process parameters, such as performance or process‐efficiency indexes, which are difficult to acquire by direct measurement. The implementation and validation procedure on a real case study is carried out with the aid of the facilities supplied by commercial neural networks toolboxes, which manage databases, neural network structures and highly efficient training algorithms.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1468-0394.2007.00420.x</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0266-4720
ispartof Expert systems, 2007-02, Vol.24 (1), p.47-63
issn 0266-4720
1468-0394
language eng
recordid cdi_proquest_miscellaneous_34276070
source EBSCOhost Business Source Ultimate; Wiley
subjects Algorithms
Approximation
backpropagation
Estimating techniques
Expert systems
fault detection
fault isolation
functional approximation
Neural networks
non-linear systems
Parameter estimation
residual generation
Studies
title On fault isolation by neural-networks-based parameter estimation techniques
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A26%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20fault%20isolation%20by%20neural-networks-based%20parameter%20estimation%20techniques&rft.jtitle=Expert%20systems&rft.au=Garcia,%20Ramon%20Ferreiro&rft.date=2007-02&rft.volume=24&rft.issue=1&rft.spage=47&rft.epage=63&rft.pages=47-63&rft.issn=0266-4720&rft.eissn=1468-0394&rft_id=info:doi/10.1111/j.1468-0394.2007.00420.x&rft_dat=%3Cproquest_cross%3E1199102511%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4090-308dea191aa1245fcafa984161abb2e4a8c2ec20563cbdae8efa9fa2813791b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=196928278&rft_id=info:pmid/&rfr_iscdi=true