Loading…
On fault isolation by neural-networks-based parameter estimation techniques
: The aim of the work is to exploit some aspects of functional approximation techniques in parameter estimation procedures applied on fault detection and isolation tasks using backpropagation neural networks as functional approximation devices. The major focus of this paper deals with the strategy u...
Saved in:
Published in: | Expert systems 2007-02, Vol.24 (1), p.47-63 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4090-308dea191aa1245fcafa984161abb2e4a8c2ec20563cbdae8efa9fa2813791b93 |
---|---|
cites | cdi_FETCH-LOGICAL-c4090-308dea191aa1245fcafa984161abb2e4a8c2ec20563cbdae8efa9fa2813791b93 |
container_end_page | 63 |
container_issue | 1 |
container_start_page | 47 |
container_title | Expert systems |
container_volume | 24 |
creator | Garcia, Ramon Ferreiro |
description | : The aim of the work is to exploit some aspects of functional approximation techniques in parameter estimation procedures applied on fault detection and isolation tasks using backpropagation neural networks as functional approximation devices. The major focus of this paper deals with the strategy used in the data selection task as applied to the determination of non‐conventional process parameters, such as performance or process‐efficiency indexes, which are difficult to acquire by direct measurement. The implementation and validation procedure on a real case study is carried out with the aid of the facilities supplied by commercial neural networks toolboxes, which manage databases, neural network structures and highly efficient training algorithms. |
doi_str_mv | 10.1111/j.1468-0394.2007.00420.x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34276070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1199102511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4090-308dea191aa1245fcafa984161abb2e4a8c2ec20563cbdae8efa9fa2813791b93</originalsourceid><addsrcrecordid>eNqNkD1v2zAQhomgAeIm_Q9Ch25SjhTNj6FDazhOkaAZkqDJRJzkEypbllxSQux_H6oqMnQKlyNw73PkPYwlHDIez-Um41KZFHIrMwGgMwApIDucsNlb4wObgVAqlVrAGfsYwgYAuNZqxm7u2qTCoemTOnQN9nXXJsUxaWnw2KQt9S-d34a0wEDrZI8ed9STTyj09W5K91T-bus_A4ULdlphE-jTv3rOHq-WD4vr9PZu9WPx7TYtJVhIczBrQm45IhdyXpVYoTWSK45FIUiiKQWVAuYqL4s1kqHYr1AYnmvLC5ufsy_T3L3vxnd7t6tDSU2DLXVDcLkUWoGGGPz8X3DTDb6Nf3PcKiuM0CaGzBQqfReCp8rtfdzNHx0HNyp2GzeadKNJNyp2fxW7Q0S_TuhL3dDx3ZxbPt0_x1vk04mvQ0-HNx791imd67n79XMVp8kbu5DKfc9fAWQfkdA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>196928278</pqid></control><display><type>article</type><title>On fault isolation by neural-networks-based parameter estimation techniques</title><source>EBSCOhost Business Source Ultimate</source><source>Wiley</source><creator>Garcia, Ramon Ferreiro</creator><creatorcontrib>Garcia, Ramon Ferreiro</creatorcontrib><description>: The aim of the work is to exploit some aspects of functional approximation techniques in parameter estimation procedures applied on fault detection and isolation tasks using backpropagation neural networks as functional approximation devices. The major focus of this paper deals with the strategy used in the data selection task as applied to the determination of non‐conventional process parameters, such as performance or process‐efficiency indexes, which are difficult to acquire by direct measurement. The implementation and validation procedure on a real case study is carried out with the aid of the facilities supplied by commercial neural networks toolboxes, which manage databases, neural network structures and highly efficient training algorithms.</description><identifier>ISSN: 0266-4720</identifier><identifier>EISSN: 1468-0394</identifier><identifier>DOI: 10.1111/j.1468-0394.2007.00420.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Algorithms ; Approximation ; backpropagation ; Estimating techniques ; Expert systems ; fault detection ; fault isolation ; functional approximation ; Neural networks ; non-linear systems ; Parameter estimation ; residual generation ; Studies</subject><ispartof>Expert systems, 2007-02, Vol.24 (1), p.47-63</ispartof><rights>2007 Blackwell Publishing Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4090-308dea191aa1245fcafa984161abb2e4a8c2ec20563cbdae8efa9fa2813791b93</citedby><cites>FETCH-LOGICAL-c4090-308dea191aa1245fcafa984161abb2e4a8c2ec20563cbdae8efa9fa2813791b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Garcia, Ramon Ferreiro</creatorcontrib><title>On fault isolation by neural-networks-based parameter estimation techniques</title><title>Expert systems</title><description>: The aim of the work is to exploit some aspects of functional approximation techniques in parameter estimation procedures applied on fault detection and isolation tasks using backpropagation neural networks as functional approximation devices. The major focus of this paper deals with the strategy used in the data selection task as applied to the determination of non‐conventional process parameters, such as performance or process‐efficiency indexes, which are difficult to acquire by direct measurement. The implementation and validation procedure on a real case study is carried out with the aid of the facilities supplied by commercial neural networks toolboxes, which manage databases, neural network structures and highly efficient training algorithms.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>backpropagation</subject><subject>Estimating techniques</subject><subject>Expert systems</subject><subject>fault detection</subject><subject>fault isolation</subject><subject>functional approximation</subject><subject>Neural networks</subject><subject>non-linear systems</subject><subject>Parameter estimation</subject><subject>residual generation</subject><subject>Studies</subject><issn>0266-4720</issn><issn>1468-0394</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqNkD1v2zAQhomgAeIm_Q9Ch25SjhTNj6FDazhOkaAZkqDJRJzkEypbllxSQux_H6oqMnQKlyNw73PkPYwlHDIez-Um41KZFHIrMwGgMwApIDucsNlb4wObgVAqlVrAGfsYwgYAuNZqxm7u2qTCoemTOnQN9nXXJsUxaWnw2KQt9S-d34a0wEDrZI8ed9STTyj09W5K91T-bus_A4ULdlphE-jTv3rOHq-WD4vr9PZu9WPx7TYtJVhIczBrQm45IhdyXpVYoTWSK45FIUiiKQWVAuYqL4s1kqHYr1AYnmvLC5ufsy_T3L3vxnd7t6tDSU2DLXVDcLkUWoGGGPz8X3DTDb6Nf3PcKiuM0CaGzBQqfReCp8rtfdzNHx0HNyp2GzeadKNJNyp2fxW7Q0S_TuhL3dDx3ZxbPt0_x1vk04mvQ0-HNx791imd67n79XMVp8kbu5DKfc9fAWQfkdA</recordid><startdate>200702</startdate><enddate>200702</enddate><creator>Garcia, Ramon Ferreiro</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200702</creationdate><title>On fault isolation by neural-networks-based parameter estimation techniques</title><author>Garcia, Ramon Ferreiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4090-308dea191aa1245fcafa984161abb2e4a8c2ec20563cbdae8efa9fa2813791b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>backpropagation</topic><topic>Estimating techniques</topic><topic>Expert systems</topic><topic>fault detection</topic><topic>fault isolation</topic><topic>functional approximation</topic><topic>Neural networks</topic><topic>non-linear systems</topic><topic>Parameter estimation</topic><topic>residual generation</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia, Ramon Ferreiro</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Expert systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia, Ramon Ferreiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On fault isolation by neural-networks-based parameter estimation techniques</atitle><jtitle>Expert systems</jtitle><date>2007-02</date><risdate>2007</risdate><volume>24</volume><issue>1</issue><spage>47</spage><epage>63</epage><pages>47-63</pages><issn>0266-4720</issn><eissn>1468-0394</eissn><abstract>: The aim of the work is to exploit some aspects of functional approximation techniques in parameter estimation procedures applied on fault detection and isolation tasks using backpropagation neural networks as functional approximation devices. The major focus of this paper deals with the strategy used in the data selection task as applied to the determination of non‐conventional process parameters, such as performance or process‐efficiency indexes, which are difficult to acquire by direct measurement. The implementation and validation procedure on a real case study is carried out with the aid of the facilities supplied by commercial neural networks toolboxes, which manage databases, neural network structures and highly efficient training algorithms.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1468-0394.2007.00420.x</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-4720 |
ispartof | Expert systems, 2007-02, Vol.24 (1), p.47-63 |
issn | 0266-4720 1468-0394 |
language | eng |
recordid | cdi_proquest_miscellaneous_34276070 |
source | EBSCOhost Business Source Ultimate; Wiley |
subjects | Algorithms Approximation backpropagation Estimating techniques Expert systems fault detection fault isolation functional approximation Neural networks non-linear systems Parameter estimation residual generation Studies |
title | On fault isolation by neural-networks-based parameter estimation techniques |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A26%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20fault%20isolation%20by%20neural-networks-based%20parameter%20estimation%20techniques&rft.jtitle=Expert%20systems&rft.au=Garcia,%20Ramon%20Ferreiro&rft.date=2007-02&rft.volume=24&rft.issue=1&rft.spage=47&rft.epage=63&rft.pages=47-63&rft.issn=0266-4720&rft.eissn=1468-0394&rft_id=info:doi/10.1111/j.1468-0394.2007.00420.x&rft_dat=%3Cproquest_cross%3E1199102511%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4090-308dea191aa1245fcafa984161abb2e4a8c2ec20563cbdae8efa9fa2813791b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=196928278&rft_id=info:pmid/&rfr_iscdi=true |