Loading…
Investigation of the global dynamics of cellular automata using Boolean derivatives
Global dynamics of a non-linear Cellular Automaton (CA), is, in general irregular, asymmetric and unpredictable as opposed to that of a linear CA, which is highly systematic and tractable. In this paper, efforts have been made to systematize non-linear CA evolutions in the light of Boolean derivativ...
Saved in:
Published in: | Computers & mathematics with applications (1987) 2009-04, Vol.57 (8), p.1337-1351 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c334t-cc5c02324229a62787b7040665e59e6785ce863ede3802de4969dbb688fd2dd53 |
---|---|
cites | cdi_FETCH-LOGICAL-c334t-cc5c02324229a62787b7040665e59e6785ce863ede3802de4969dbb688fd2dd53 |
container_end_page | 1351 |
container_issue | 8 |
container_start_page | 1337 |
container_title | Computers & mathematics with applications (1987) |
container_volume | 57 |
creator | Choudhury, Pabitra Pal Sahoo, Sudhakar Chakraborty, Mithun Bhandari, Subir Kumar Pal, Amita |
description | Global dynamics of a non-linear Cellular Automaton (CA), is, in general irregular, asymmetric and unpredictable as opposed to that of a linear CA, which is highly systematic and tractable. In this paper, efforts have been made to systematize non-linear CA evolutions in the light of Boolean derivatives and Jacobian matrices. A few new theorems on Hamming Distance between Boolean functions as well as on Jacobian matrices of cellular automata are proposed and proved. Moreover, a classification of Boolean functions based on the nature of deviation from linearity has been suggested with a view to grouping them together to classes/subclasses such that the members of a class/subclass satisfy certain similar properties. Next, an error vector, which cannot be captured by the Jacobian matrix, is identified and systematically classified. This leads us to the concept of modified Jacobian matrix whereby a quasi-affine representation of a non-linear cellular automaton is introduced. |
doi_str_mv | 10.1016/j.camwa.2008.11.012 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34285225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122109000479</els_id><sourcerecordid>34285225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-cc5c02324229a62787b7040665e59e6785ce863ede3802de4969dbb688fd2dd53</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqXwC1g8sSX4kTjOwAAVj0qVGIDZcuyb4CqJi50U9d-TUGamKx2dc3TPh9A1JSklVNxuU6O7b50yQmRKaUooO0ELKgueFELIU7QgspQJZYyeo4sYt4SQjDOyQG_rfg9xcI0enO-xr_HwCbhpfaVbbA-97pyJs2ygbcdWB6zHwXd60HiMrm_wg_ct6B5bCG4_lUxtl-is1m2Eq7-7RB9Pj--rl2Tz-rxe3W8Sw3k2JMbkhjDOMsZKLVghi6ogGREih7wEUcjcgBQcLHBJmIWsFKWtKiFlbZm1OV-im2PvLvivcVqhOhfnP3UPfoyKZ0zmjM1GfjSa4GMMUKtdcJ0OB0WJmgGqrfoFqGaAilI1AZxSd8cUTBv2DoKKxkFvwLoAZlDWu3_zP-gIev0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34285225</pqid></control><display><type>article</type><title>Investigation of the global dynamics of cellular automata using Boolean derivatives</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Choudhury, Pabitra Pal ; Sahoo, Sudhakar ; Chakraborty, Mithun ; Bhandari, Subir Kumar ; Pal, Amita</creator><creatorcontrib>Choudhury, Pabitra Pal ; Sahoo, Sudhakar ; Chakraborty, Mithun ; Bhandari, Subir Kumar ; Pal, Amita</creatorcontrib><description>Global dynamics of a non-linear Cellular Automaton (CA), is, in general irregular, asymmetric and unpredictable as opposed to that of a linear CA, which is highly systematic and tractable. In this paper, efforts have been made to systematize non-linear CA evolutions in the light of Boolean derivatives and Jacobian matrices. A few new theorems on Hamming Distance between Boolean functions as well as on Jacobian matrices of cellular automata are proposed and proved. Moreover, a classification of Boolean functions based on the nature of deviation from linearity has been suggested with a view to grouping them together to classes/subclasses such that the members of a class/subclass satisfy certain similar properties. Next, an error vector, which cannot be captured by the Jacobian matrix, is identified and systematically classified. This leads us to the concept of modified Jacobian matrix whereby a quasi-affine representation of a non-linear cellular automaton is introduced.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2008.11.012</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algebraic normal form ; Boolean functions ; Error function ; Jacobian matrix ; Linear and affine functions ; Modified Jacobian matrix ; State transition diagram ; Wolfram’s naming scheme</subject><ispartof>Computers & mathematics with applications (1987), 2009-04, Vol.57 (8), p.1337-1351</ispartof><rights>2009 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-cc5c02324229a62787b7040665e59e6785ce863ede3802de4969dbb688fd2dd53</citedby><cites>FETCH-LOGICAL-c334t-cc5c02324229a62787b7040665e59e6785ce863ede3802de4969dbb688fd2dd53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Choudhury, Pabitra Pal</creatorcontrib><creatorcontrib>Sahoo, Sudhakar</creatorcontrib><creatorcontrib>Chakraborty, Mithun</creatorcontrib><creatorcontrib>Bhandari, Subir Kumar</creatorcontrib><creatorcontrib>Pal, Amita</creatorcontrib><title>Investigation of the global dynamics of cellular automata using Boolean derivatives</title><title>Computers & mathematics with applications (1987)</title><description>Global dynamics of a non-linear Cellular Automaton (CA), is, in general irregular, asymmetric and unpredictable as opposed to that of a linear CA, which is highly systematic and tractable. In this paper, efforts have been made to systematize non-linear CA evolutions in the light of Boolean derivatives and Jacobian matrices. A few new theorems on Hamming Distance between Boolean functions as well as on Jacobian matrices of cellular automata are proposed and proved. Moreover, a classification of Boolean functions based on the nature of deviation from linearity has been suggested with a view to grouping them together to classes/subclasses such that the members of a class/subclass satisfy certain similar properties. Next, an error vector, which cannot be captured by the Jacobian matrix, is identified and systematically classified. This leads us to the concept of modified Jacobian matrix whereby a quasi-affine representation of a non-linear cellular automaton is introduced.</description><subject>Algebraic normal form</subject><subject>Boolean functions</subject><subject>Error function</subject><subject>Jacobian matrix</subject><subject>Linear and affine functions</subject><subject>Modified Jacobian matrix</subject><subject>State transition diagram</subject><subject>Wolfram’s naming scheme</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EEqXwC1g8sSX4kTjOwAAVj0qVGIDZcuyb4CqJi50U9d-TUGamKx2dc3TPh9A1JSklVNxuU6O7b50yQmRKaUooO0ELKgueFELIU7QgspQJZYyeo4sYt4SQjDOyQG_rfg9xcI0enO-xr_HwCbhpfaVbbA-97pyJs2ygbcdWB6zHwXd60HiMrm_wg_ct6B5bCG4_lUxtl-is1m2Eq7-7RB9Pj--rl2Tz-rxe3W8Sw3k2JMbkhjDOMsZKLVghi6ogGREih7wEUcjcgBQcLHBJmIWsFKWtKiFlbZm1OV-im2PvLvivcVqhOhfnP3UPfoyKZ0zmjM1GfjSa4GMMUKtdcJ0OB0WJmgGqrfoFqGaAilI1AZxSd8cUTBv2DoKKxkFvwLoAZlDWu3_zP-gIev0</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Choudhury, Pabitra Pal</creator><creator>Sahoo, Sudhakar</creator><creator>Chakraborty, Mithun</creator><creator>Bhandari, Subir Kumar</creator><creator>Pal, Amita</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090401</creationdate><title>Investigation of the global dynamics of cellular automata using Boolean derivatives</title><author>Choudhury, Pabitra Pal ; Sahoo, Sudhakar ; Chakraborty, Mithun ; Bhandari, Subir Kumar ; Pal, Amita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-cc5c02324229a62787b7040665e59e6785ce863ede3802de4969dbb688fd2dd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algebraic normal form</topic><topic>Boolean functions</topic><topic>Error function</topic><topic>Jacobian matrix</topic><topic>Linear and affine functions</topic><topic>Modified Jacobian matrix</topic><topic>State transition diagram</topic><topic>Wolfram’s naming scheme</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choudhury, Pabitra Pal</creatorcontrib><creatorcontrib>Sahoo, Sudhakar</creatorcontrib><creatorcontrib>Chakraborty, Mithun</creatorcontrib><creatorcontrib>Bhandari, Subir Kumar</creatorcontrib><creatorcontrib>Pal, Amita</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choudhury, Pabitra Pal</au><au>Sahoo, Sudhakar</au><au>Chakraborty, Mithun</au><au>Bhandari, Subir Kumar</au><au>Pal, Amita</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of the global dynamics of cellular automata using Boolean derivatives</atitle><jtitle>Computers & mathematics with applications (1987)</jtitle><date>2009-04-01</date><risdate>2009</risdate><volume>57</volume><issue>8</issue><spage>1337</spage><epage>1351</epage><pages>1337-1351</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>Global dynamics of a non-linear Cellular Automaton (CA), is, in general irregular, asymmetric and unpredictable as opposed to that of a linear CA, which is highly systematic and tractable. In this paper, efforts have been made to systematize non-linear CA evolutions in the light of Boolean derivatives and Jacobian matrices. A few new theorems on Hamming Distance between Boolean functions as well as on Jacobian matrices of cellular automata are proposed and proved. Moreover, a classification of Boolean functions based on the nature of deviation from linearity has been suggested with a view to grouping them together to classes/subclasses such that the members of a class/subclass satisfy certain similar properties. Next, an error vector, which cannot be captured by the Jacobian matrix, is identified and systematically classified. This leads us to the concept of modified Jacobian matrix whereby a quasi-affine representation of a non-linear cellular automaton is introduced.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2008.11.012</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-1221 |
ispartof | Computers & mathematics with applications (1987), 2009-04, Vol.57 (8), p.1337-1351 |
issn | 0898-1221 1873-7668 |
language | eng |
recordid | cdi_proquest_miscellaneous_34285225 |
source | Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | Algebraic normal form Boolean functions Error function Jacobian matrix Linear and affine functions Modified Jacobian matrix State transition diagram Wolfram’s naming scheme |
title | Investigation of the global dynamics of cellular automata using Boolean derivatives |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A11%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20the%20global%20dynamics%20of%20cellular%20automata%20using%20Boolean%20derivatives&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Choudhury,%20Pabitra%20Pal&rft.date=2009-04-01&rft.volume=57&rft.issue=8&rft.spage=1337&rft.epage=1351&rft.pages=1337-1351&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2008.11.012&rft_dat=%3Cproquest_cross%3E34285225%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-cc5c02324229a62787b7040665e59e6785ce863ede3802de4969dbb688fd2dd53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=34285225&rft_id=info:pmid/&rfr_iscdi=true |