Loading…

Investigation of the global dynamics of cellular automata using Boolean derivatives

Global dynamics of a non-linear Cellular Automaton (CA), is, in general irregular, asymmetric and unpredictable as opposed to that of a linear CA, which is highly systematic and tractable. In this paper, efforts have been made to systematize non-linear CA evolutions in the light of Boolean derivativ...

Full description

Saved in:
Bibliographic Details
Published in:Computers & mathematics with applications (1987) 2009-04, Vol.57 (8), p.1337-1351
Main Authors: Choudhury, Pabitra Pal, Sahoo, Sudhakar, Chakraborty, Mithun, Bhandari, Subir Kumar, Pal, Amita
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c334t-cc5c02324229a62787b7040665e59e6785ce863ede3802de4969dbb688fd2dd53
cites cdi_FETCH-LOGICAL-c334t-cc5c02324229a62787b7040665e59e6785ce863ede3802de4969dbb688fd2dd53
container_end_page 1351
container_issue 8
container_start_page 1337
container_title Computers & mathematics with applications (1987)
container_volume 57
creator Choudhury, Pabitra Pal
Sahoo, Sudhakar
Chakraborty, Mithun
Bhandari, Subir Kumar
Pal, Amita
description Global dynamics of a non-linear Cellular Automaton (CA), is, in general irregular, asymmetric and unpredictable as opposed to that of a linear CA, which is highly systematic and tractable. In this paper, efforts have been made to systematize non-linear CA evolutions in the light of Boolean derivatives and Jacobian matrices. A few new theorems on Hamming Distance between Boolean functions as well as on Jacobian matrices of cellular automata are proposed and proved. Moreover, a classification of Boolean functions based on the nature of deviation from linearity has been suggested with a view to grouping them together to classes/subclasses such that the members of a class/subclass satisfy certain similar properties. Next, an error vector, which cannot be captured by the Jacobian matrix, is identified and systematically classified. This leads us to the concept of modified Jacobian matrix whereby a quasi-affine representation of a non-linear cellular automaton is introduced.
doi_str_mv 10.1016/j.camwa.2008.11.012
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34285225</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122109000479</els_id><sourcerecordid>34285225</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-cc5c02324229a62787b7040665e59e6785ce863ede3802de4969dbb688fd2dd53</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EEqXwC1g8sSX4kTjOwAAVj0qVGIDZcuyb4CqJi50U9d-TUGamKx2dc3TPh9A1JSklVNxuU6O7b50yQmRKaUooO0ELKgueFELIU7QgspQJZYyeo4sYt4SQjDOyQG_rfg9xcI0enO-xr_HwCbhpfaVbbA-97pyJs2ygbcdWB6zHwXd60HiMrm_wg_ct6B5bCG4_lUxtl-is1m2Eq7-7RB9Pj--rl2Tz-rxe3W8Sw3k2JMbkhjDOMsZKLVghi6ogGREih7wEUcjcgBQcLHBJmIWsFKWtKiFlbZm1OV-im2PvLvivcVqhOhfnP3UPfoyKZ0zmjM1GfjSa4GMMUKtdcJ0OB0WJmgGqrfoFqGaAilI1AZxSd8cUTBv2DoKKxkFvwLoAZlDWu3_zP-gIev0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34285225</pqid></control><display><type>article</type><title>Investigation of the global dynamics of cellular automata using Boolean derivatives</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Choudhury, Pabitra Pal ; Sahoo, Sudhakar ; Chakraborty, Mithun ; Bhandari, Subir Kumar ; Pal, Amita</creator><creatorcontrib>Choudhury, Pabitra Pal ; Sahoo, Sudhakar ; Chakraborty, Mithun ; Bhandari, Subir Kumar ; Pal, Amita</creatorcontrib><description>Global dynamics of a non-linear Cellular Automaton (CA), is, in general irregular, asymmetric and unpredictable as opposed to that of a linear CA, which is highly systematic and tractable. In this paper, efforts have been made to systematize non-linear CA evolutions in the light of Boolean derivatives and Jacobian matrices. A few new theorems on Hamming Distance between Boolean functions as well as on Jacobian matrices of cellular automata are proposed and proved. Moreover, a classification of Boolean functions based on the nature of deviation from linearity has been suggested with a view to grouping them together to classes/subclasses such that the members of a class/subclass satisfy certain similar properties. Next, an error vector, which cannot be captured by the Jacobian matrix, is identified and systematically classified. This leads us to the concept of modified Jacobian matrix whereby a quasi-affine representation of a non-linear cellular automaton is introduced.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2008.11.012</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Algebraic normal form ; Boolean functions ; Error function ; Jacobian matrix ; Linear and affine functions ; Modified Jacobian matrix ; State transition diagram ; Wolfram’s naming scheme</subject><ispartof>Computers &amp; mathematics with applications (1987), 2009-04, Vol.57 (8), p.1337-1351</ispartof><rights>2009 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-cc5c02324229a62787b7040665e59e6785ce863ede3802de4969dbb688fd2dd53</citedby><cites>FETCH-LOGICAL-c334t-cc5c02324229a62787b7040665e59e6785ce863ede3802de4969dbb688fd2dd53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Choudhury, Pabitra Pal</creatorcontrib><creatorcontrib>Sahoo, Sudhakar</creatorcontrib><creatorcontrib>Chakraborty, Mithun</creatorcontrib><creatorcontrib>Bhandari, Subir Kumar</creatorcontrib><creatorcontrib>Pal, Amita</creatorcontrib><title>Investigation of the global dynamics of cellular automata using Boolean derivatives</title><title>Computers &amp; mathematics with applications (1987)</title><description>Global dynamics of a non-linear Cellular Automaton (CA), is, in general irregular, asymmetric and unpredictable as opposed to that of a linear CA, which is highly systematic and tractable. In this paper, efforts have been made to systematize non-linear CA evolutions in the light of Boolean derivatives and Jacobian matrices. A few new theorems on Hamming Distance between Boolean functions as well as on Jacobian matrices of cellular automata are proposed and proved. Moreover, a classification of Boolean functions based on the nature of deviation from linearity has been suggested with a view to grouping them together to classes/subclasses such that the members of a class/subclass satisfy certain similar properties. Next, an error vector, which cannot be captured by the Jacobian matrix, is identified and systematically classified. This leads us to the concept of modified Jacobian matrix whereby a quasi-affine representation of a non-linear cellular automaton is introduced.</description><subject>Algebraic normal form</subject><subject>Boolean functions</subject><subject>Error function</subject><subject>Jacobian matrix</subject><subject>Linear and affine functions</subject><subject>Modified Jacobian matrix</subject><subject>State transition diagram</subject><subject>Wolfram’s naming scheme</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kDtPwzAUhS0EEqXwC1g8sSX4kTjOwAAVj0qVGIDZcuyb4CqJi50U9d-TUGamKx2dc3TPh9A1JSklVNxuU6O7b50yQmRKaUooO0ELKgueFELIU7QgspQJZYyeo4sYt4SQjDOyQG_rfg9xcI0enO-xr_HwCbhpfaVbbA-97pyJs2ygbcdWB6zHwXd60HiMrm_wg_ct6B5bCG4_lUxtl-is1m2Eq7-7RB9Pj--rl2Tz-rxe3W8Sw3k2JMbkhjDOMsZKLVghi6ogGREih7wEUcjcgBQcLHBJmIWsFKWtKiFlbZm1OV-im2PvLvivcVqhOhfnP3UPfoyKZ0zmjM1GfjSa4GMMUKtdcJ0OB0WJmgGqrfoFqGaAilI1AZxSd8cUTBv2DoKKxkFvwLoAZlDWu3_zP-gIev0</recordid><startdate>20090401</startdate><enddate>20090401</enddate><creator>Choudhury, Pabitra Pal</creator><creator>Sahoo, Sudhakar</creator><creator>Chakraborty, Mithun</creator><creator>Bhandari, Subir Kumar</creator><creator>Pal, Amita</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090401</creationdate><title>Investigation of the global dynamics of cellular automata using Boolean derivatives</title><author>Choudhury, Pabitra Pal ; Sahoo, Sudhakar ; Chakraborty, Mithun ; Bhandari, Subir Kumar ; Pal, Amita</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-cc5c02324229a62787b7040665e59e6785ce863ede3802de4969dbb688fd2dd53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algebraic normal form</topic><topic>Boolean functions</topic><topic>Error function</topic><topic>Jacobian matrix</topic><topic>Linear and affine functions</topic><topic>Modified Jacobian matrix</topic><topic>State transition diagram</topic><topic>Wolfram’s naming scheme</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choudhury, Pabitra Pal</creatorcontrib><creatorcontrib>Sahoo, Sudhakar</creatorcontrib><creatorcontrib>Chakraborty, Mithun</creatorcontrib><creatorcontrib>Bhandari, Subir Kumar</creatorcontrib><creatorcontrib>Pal, Amita</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choudhury, Pabitra Pal</au><au>Sahoo, Sudhakar</au><au>Chakraborty, Mithun</au><au>Bhandari, Subir Kumar</au><au>Pal, Amita</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Investigation of the global dynamics of cellular automata using Boolean derivatives</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2009-04-01</date><risdate>2009</risdate><volume>57</volume><issue>8</issue><spage>1337</spage><epage>1351</epage><pages>1337-1351</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>Global dynamics of a non-linear Cellular Automaton (CA), is, in general irregular, asymmetric and unpredictable as opposed to that of a linear CA, which is highly systematic and tractable. In this paper, efforts have been made to systematize non-linear CA evolutions in the light of Boolean derivatives and Jacobian matrices. A few new theorems on Hamming Distance between Boolean functions as well as on Jacobian matrices of cellular automata are proposed and proved. Moreover, a classification of Boolean functions based on the nature of deviation from linearity has been suggested with a view to grouping them together to classes/subclasses such that the members of a class/subclass satisfy certain similar properties. Next, an error vector, which cannot be captured by the Jacobian matrix, is identified and systematically classified. This leads us to the concept of modified Jacobian matrix whereby a quasi-affine representation of a non-linear cellular automaton is introduced.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2008.11.012</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2009-04, Vol.57 (8), p.1337-1351
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_miscellaneous_34285225
source Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Algebraic normal form
Boolean functions
Error function
Jacobian matrix
Linear and affine functions
Modified Jacobian matrix
State transition diagram
Wolfram’s naming scheme
title Investigation of the global dynamics of cellular automata using Boolean derivatives
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A11%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Investigation%20of%20the%20global%20dynamics%20of%20cellular%20automata%20using%20Boolean%20derivatives&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Choudhury,%20Pabitra%20Pal&rft.date=2009-04-01&rft.volume=57&rft.issue=8&rft.spage=1337&rft.epage=1351&rft.pages=1337-1351&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2008.11.012&rft_dat=%3Cproquest_cross%3E34285225%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c334t-cc5c02324229a62787b7040665e59e6785ce863ede3802de4969dbb688fd2dd53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=34285225&rft_id=info:pmid/&rfr_iscdi=true