Loading…

Maximum Entropy Coordinates for Arbitrary Polytopes

Barycentric coordinates can be used to express any point inside a triangle as a unique convex combination of the triangle's vertices, and they provide a convenient way to linearly interpolate data that is given at the vertices of a triangle. In recent years, the ideas of barycentric coordinates...

Full description

Saved in:
Bibliographic Details
Published in:Computer graphics forum 2008-07, Vol.27 (5), p.1513-1520
Main Authors: Hormann, K., Sukumar, N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4592-df0d6c087ab36984938c10fe62680fb27219103861f170b61cc0cd8e01775f653
cites cdi_FETCH-LOGICAL-c4592-df0d6c087ab36984938c10fe62680fb27219103861f170b61cc0cd8e01775f653
container_end_page 1520
container_issue 5
container_start_page 1513
container_title Computer graphics forum
container_volume 27
creator Hormann, K.
Sukumar, N.
description Barycentric coordinates can be used to express any point inside a triangle as a unique convex combination of the triangle's vertices, and they provide a convenient way to linearly interpolate data that is given at the vertices of a triangle. In recent years, the ideas of barycentric coordinates and barycentric interpolation have been extended to arbitrary polygons in the plane and general polytopes in higher dimensions, which in turn has led to novel solutions in applications like mesh parameterization, image warping, and mesh deformation. In this paper we introduce a new generalization of barycentric coordinates that stems from the maximum entropy principle. The coordinates are guaranteed to be positive inside any planar polygon, can be evaluated efficiently by solving a convex optimization problem with Newton's method, and experimental evidence indicates that they are smooth inside the domain. Moreover, the construction of these coordinates can be extended to arbitrary polyhedra and higher‐dimensional polytopes.
doi_str_mv 10.1111/j.1467-8659.2008.01292.x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34333220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1564569461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4592-df0d6c087ab36984938c10fe62680fb27219103861f170b61cc0cd8e01775f653</originalsourceid><addsrcrecordid>eNqNkE1PwkAQhjdGExH9D40Hb62z39uDB0IQjfgVUY-TUrZJsbC420b497ZiOHhyLjPJvs9k9iEkopDQti4XCRVKx0bJNGEAJgHKUpZsDkhv_3BIekDbWYOUx-QkhAUACK1kj_D7bFMum2U0WtXerbfR0Dk_L1dZbUNUOB8N_Kysfea30ZOrtrVb23BKjoqsCvbst_fJ6_VoOryJJ4_j2-FgEudCpiyeFzBXORidzbhKjUi5ySkUVjFloJgxzWhKgRtFC6phpmieQz43FqjWslCS98nFbu_au8_GhhqXZchtVWUr65qAXHDOGYM2eP4nuHCNX7W3IU2FkkLKbpvZhXLvQvC2wLUvl-3HkAJ2KnGBnTHsjGGnEn9U4qZFr3boV1nZ7b85HI6vu6nl4x1fhtpu9nzmP1BpriW-P4wxhZepEHfP-Ma_ATdNhwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194654555</pqid></control><display><type>article</type><title>Maximum Entropy Coordinates for Arbitrary Polytopes</title><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>Art &amp; Architecture Source</source><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Hormann, K. ; Sukumar, N.</creator><creatorcontrib>Hormann, K. ; Sukumar, N.</creatorcontrib><description>Barycentric coordinates can be used to express any point inside a triangle as a unique convex combination of the triangle's vertices, and they provide a convenient way to linearly interpolate data that is given at the vertices of a triangle. In recent years, the ideas of barycentric coordinates and barycentric interpolation have been extended to arbitrary polygons in the plane and general polytopes in higher dimensions, which in turn has led to novel solutions in applications like mesh parameterization, image warping, and mesh deformation. In this paper we introduce a new generalization of barycentric coordinates that stems from the maximum entropy principle. The coordinates are guaranteed to be positive inside any planar polygon, can be evaluated efficiently by solving a convex optimization problem with Newton's method, and experimental evidence indicates that they are smooth inside the domain. Moreover, the construction of these coordinates can be extended to arbitrary polyhedra and higher‐dimensional polytopes.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/j.1467-8659.2008.01292.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Entropy ; G.1.1 [Numerical Analysis]: Interpolation formulas ; G.1.6 [Numerical Analysis]: Constrained optimization ; I.3.5 [Computer Graphics]: Geometric algorithms ; Polytopes</subject><ispartof>Computer graphics forum, 2008-07, Vol.27 (5), p.1513-1520</ispartof><rights>2008 The Author(s) Journal compilation © 2008 The Eurographics Association and Blackwell Publishing Ltd.</rights><rights>2008 The Eurographics Association and Blackwell Publishing Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4592-df0d6c087ab36984938c10fe62680fb27219103861f170b61cc0cd8e01775f653</citedby><cites>FETCH-LOGICAL-c4592-df0d6c087ab36984938c10fe62680fb27219103861f170b61cc0cd8e01775f653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hormann, K.</creatorcontrib><creatorcontrib>Sukumar, N.</creatorcontrib><title>Maximum Entropy Coordinates for Arbitrary Polytopes</title><title>Computer graphics forum</title><description>Barycentric coordinates can be used to express any point inside a triangle as a unique convex combination of the triangle's vertices, and they provide a convenient way to linearly interpolate data that is given at the vertices of a triangle. In recent years, the ideas of barycentric coordinates and barycentric interpolation have been extended to arbitrary polygons in the plane and general polytopes in higher dimensions, which in turn has led to novel solutions in applications like mesh parameterization, image warping, and mesh deformation. In this paper we introduce a new generalization of barycentric coordinates that stems from the maximum entropy principle. The coordinates are guaranteed to be positive inside any planar polygon, can be evaluated efficiently by solving a convex optimization problem with Newton's method, and experimental evidence indicates that they are smooth inside the domain. Moreover, the construction of these coordinates can be extended to arbitrary polyhedra and higher‐dimensional polytopes.</description><subject>Entropy</subject><subject>G.1.1 [Numerical Analysis]: Interpolation formulas</subject><subject>G.1.6 [Numerical Analysis]: Constrained optimization</subject><subject>I.3.5 [Computer Graphics]: Geometric algorithms</subject><subject>Polytopes</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkE1PwkAQhjdGExH9D40Hb62z39uDB0IQjfgVUY-TUrZJsbC420b497ZiOHhyLjPJvs9k9iEkopDQti4XCRVKx0bJNGEAJgHKUpZsDkhv_3BIekDbWYOUx-QkhAUACK1kj_D7bFMum2U0WtXerbfR0Dk_L1dZbUNUOB8N_Kysfea30ZOrtrVb23BKjoqsCvbst_fJ6_VoOryJJ4_j2-FgEudCpiyeFzBXORidzbhKjUi5ySkUVjFloJgxzWhKgRtFC6phpmieQz43FqjWslCS98nFbu_au8_GhhqXZchtVWUr65qAXHDOGYM2eP4nuHCNX7W3IU2FkkLKbpvZhXLvQvC2wLUvl-3HkAJ2KnGBnTHsjGGnEn9U4qZFr3boV1nZ7b85HI6vu6nl4x1fhtpu9nzmP1BpriW-P4wxhZepEHfP-Ma_ATdNhwg</recordid><startdate>200807</startdate><enddate>200807</enddate><creator>Hormann, K.</creator><creator>Sukumar, N.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200807</creationdate><title>Maximum Entropy Coordinates for Arbitrary Polytopes</title><author>Hormann, K. ; Sukumar, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4592-df0d6c087ab36984938c10fe62680fb27219103861f170b61cc0cd8e01775f653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Entropy</topic><topic>G.1.1 [Numerical Analysis]: Interpolation formulas</topic><topic>G.1.6 [Numerical Analysis]: Constrained optimization</topic><topic>I.3.5 [Computer Graphics]: Geometric algorithms</topic><topic>Polytopes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hormann, K.</creatorcontrib><creatorcontrib>Sukumar, N.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hormann, K.</au><au>Sukumar, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximum Entropy Coordinates for Arbitrary Polytopes</atitle><jtitle>Computer graphics forum</jtitle><date>2008-07</date><risdate>2008</risdate><volume>27</volume><issue>5</issue><spage>1513</spage><epage>1520</epage><pages>1513-1520</pages><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>Barycentric coordinates can be used to express any point inside a triangle as a unique convex combination of the triangle's vertices, and they provide a convenient way to linearly interpolate data that is given at the vertices of a triangle. In recent years, the ideas of barycentric coordinates and barycentric interpolation have been extended to arbitrary polygons in the plane and general polytopes in higher dimensions, which in turn has led to novel solutions in applications like mesh parameterization, image warping, and mesh deformation. In this paper we introduce a new generalization of barycentric coordinates that stems from the maximum entropy principle. The coordinates are guaranteed to be positive inside any planar polygon, can be evaluated efficiently by solving a convex optimization problem with Newton's method, and experimental evidence indicates that they are smooth inside the domain. Moreover, the construction of these coordinates can be extended to arbitrary polyhedra and higher‐dimensional polytopes.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1467-8659.2008.01292.x</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0167-7055
ispartof Computer graphics forum, 2008-07, Vol.27 (5), p.1513-1520
issn 0167-7055
1467-8659
language eng
recordid cdi_proquest_miscellaneous_34333220
source Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; Art & Architecture Source; Wiley-Blackwell Read & Publish Collection
subjects Entropy
G.1.1 [Numerical Analysis]: Interpolation formulas
G.1.6 [Numerical Analysis]: Constrained optimization
I.3.5 [Computer Graphics]: Geometric algorithms
Polytopes
title Maximum Entropy Coordinates for Arbitrary Polytopes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A01%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximum%20Entropy%20Coordinates%20for%20Arbitrary%20Polytopes&rft.jtitle=Computer%20graphics%20forum&rft.au=Hormann,%20K.&rft.date=2008-07&rft.volume=27&rft.issue=5&rft.spage=1513&rft.epage=1520&rft.pages=1513-1520&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/j.1467-8659.2008.01292.x&rft_dat=%3Cproquest_cross%3E1564569461%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4592-df0d6c087ab36984938c10fe62680fb27219103861f170b61cc0cd8e01775f653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=194654555&rft_id=info:pmid/&rfr_iscdi=true