Loading…
Maximum Entropy Coordinates for Arbitrary Polytopes
Barycentric coordinates can be used to express any point inside a triangle as a unique convex combination of the triangle's vertices, and they provide a convenient way to linearly interpolate data that is given at the vertices of a triangle. In recent years, the ideas of barycentric coordinates...
Saved in:
Published in: | Computer graphics forum 2008-07, Vol.27 (5), p.1513-1520 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4592-df0d6c087ab36984938c10fe62680fb27219103861f170b61cc0cd8e01775f653 |
---|---|
cites | cdi_FETCH-LOGICAL-c4592-df0d6c087ab36984938c10fe62680fb27219103861f170b61cc0cd8e01775f653 |
container_end_page | 1520 |
container_issue | 5 |
container_start_page | 1513 |
container_title | Computer graphics forum |
container_volume | 27 |
creator | Hormann, K. Sukumar, N. |
description | Barycentric coordinates can be used to express any point inside a triangle as a unique convex combination of the triangle's vertices, and they provide a convenient way to linearly interpolate data that is given at the vertices of a triangle. In recent years, the ideas of barycentric coordinates and barycentric interpolation have been extended to arbitrary polygons in the plane and general polytopes in higher dimensions, which in turn has led to novel solutions in applications like mesh parameterization, image warping, and mesh deformation. In this paper we introduce a new generalization of barycentric coordinates that stems from the maximum entropy principle. The coordinates are guaranteed to be positive inside any planar polygon, can be evaluated efficiently by solving a convex optimization problem with Newton's method, and experimental evidence indicates that they are smooth inside the domain. Moreover, the construction of these coordinates can be extended to arbitrary polyhedra and higher‐dimensional polytopes. |
doi_str_mv | 10.1111/j.1467-8659.2008.01292.x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34333220</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1564569461</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4592-df0d6c087ab36984938c10fe62680fb27219103861f170b61cc0cd8e01775f653</originalsourceid><addsrcrecordid>eNqNkE1PwkAQhjdGExH9D40Hb62z39uDB0IQjfgVUY-TUrZJsbC420b497ZiOHhyLjPJvs9k9iEkopDQti4XCRVKx0bJNGEAJgHKUpZsDkhv_3BIekDbWYOUx-QkhAUACK1kj_D7bFMum2U0WtXerbfR0Dk_L1dZbUNUOB8N_Kysfea30ZOrtrVb23BKjoqsCvbst_fJ6_VoOryJJ4_j2-FgEudCpiyeFzBXORidzbhKjUi5ySkUVjFloJgxzWhKgRtFC6phpmieQz43FqjWslCS98nFbu_au8_GhhqXZchtVWUr65qAXHDOGYM2eP4nuHCNX7W3IU2FkkLKbpvZhXLvQvC2wLUvl-3HkAJ2KnGBnTHsjGGnEn9U4qZFr3boV1nZ7b85HI6vu6nl4x1fhtpu9nzmP1BpriW-P4wxhZepEHfP-Ma_ATdNhwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>194654555</pqid></control><display><type>article</type><title>Maximum Entropy Coordinates for Arbitrary Polytopes</title><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>Art & Architecture Source</source><source>Wiley-Blackwell Read & Publish Collection</source><creator>Hormann, K. ; Sukumar, N.</creator><creatorcontrib>Hormann, K. ; Sukumar, N.</creatorcontrib><description>Barycentric coordinates can be used to express any point inside a triangle as a unique convex combination of the triangle's vertices, and they provide a convenient way to linearly interpolate data that is given at the vertices of a triangle. In recent years, the ideas of barycentric coordinates and barycentric interpolation have been extended to arbitrary polygons in the plane and general polytopes in higher dimensions, which in turn has led to novel solutions in applications like mesh parameterization, image warping, and mesh deformation. In this paper we introduce a new generalization of barycentric coordinates that stems from the maximum entropy principle. The coordinates are guaranteed to be positive inside any planar polygon, can be evaluated efficiently by solving a convex optimization problem with Newton's method, and experimental evidence indicates that they are smooth inside the domain. Moreover, the construction of these coordinates can be extended to arbitrary polyhedra and higher‐dimensional polytopes.</description><identifier>ISSN: 0167-7055</identifier><identifier>EISSN: 1467-8659</identifier><identifier>DOI: 10.1111/j.1467-8659.2008.01292.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Entropy ; G.1.1 [Numerical Analysis]: Interpolation formulas ; G.1.6 [Numerical Analysis]: Constrained optimization ; I.3.5 [Computer Graphics]: Geometric algorithms ; Polytopes</subject><ispartof>Computer graphics forum, 2008-07, Vol.27 (5), p.1513-1520</ispartof><rights>2008 The Author(s) Journal compilation © 2008 The Eurographics Association and Blackwell Publishing Ltd.</rights><rights>2008 The Eurographics Association and Blackwell Publishing Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4592-df0d6c087ab36984938c10fe62680fb27219103861f170b61cc0cd8e01775f653</citedby><cites>FETCH-LOGICAL-c4592-df0d6c087ab36984938c10fe62680fb27219103861f170b61cc0cd8e01775f653</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Hormann, K.</creatorcontrib><creatorcontrib>Sukumar, N.</creatorcontrib><title>Maximum Entropy Coordinates for Arbitrary Polytopes</title><title>Computer graphics forum</title><description>Barycentric coordinates can be used to express any point inside a triangle as a unique convex combination of the triangle's vertices, and they provide a convenient way to linearly interpolate data that is given at the vertices of a triangle. In recent years, the ideas of barycentric coordinates and barycentric interpolation have been extended to arbitrary polygons in the plane and general polytopes in higher dimensions, which in turn has led to novel solutions in applications like mesh parameterization, image warping, and mesh deformation. In this paper we introduce a new generalization of barycentric coordinates that stems from the maximum entropy principle. The coordinates are guaranteed to be positive inside any planar polygon, can be evaluated efficiently by solving a convex optimization problem with Newton's method, and experimental evidence indicates that they are smooth inside the domain. Moreover, the construction of these coordinates can be extended to arbitrary polyhedra and higher‐dimensional polytopes.</description><subject>Entropy</subject><subject>G.1.1 [Numerical Analysis]: Interpolation formulas</subject><subject>G.1.6 [Numerical Analysis]: Constrained optimization</subject><subject>I.3.5 [Computer Graphics]: Geometric algorithms</subject><subject>Polytopes</subject><issn>0167-7055</issn><issn>1467-8659</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkE1PwkAQhjdGExH9D40Hb62z39uDB0IQjfgVUY-TUrZJsbC420b497ZiOHhyLjPJvs9k9iEkopDQti4XCRVKx0bJNGEAJgHKUpZsDkhv_3BIekDbWYOUx-QkhAUACK1kj_D7bFMum2U0WtXerbfR0Dk_L1dZbUNUOB8N_Kysfea30ZOrtrVb23BKjoqsCvbst_fJ6_VoOryJJ4_j2-FgEudCpiyeFzBXORidzbhKjUi5ySkUVjFloJgxzWhKgRtFC6phpmieQz43FqjWslCS98nFbu_au8_GhhqXZchtVWUr65qAXHDOGYM2eP4nuHCNX7W3IU2FkkLKbpvZhXLvQvC2wLUvl-3HkAJ2KnGBnTHsjGGnEn9U4qZFr3boV1nZ7b85HI6vu6nl4x1fhtpu9nzmP1BpriW-P4wxhZepEHfP-Ma_ATdNhwg</recordid><startdate>200807</startdate><enddate>200807</enddate><creator>Hormann, K.</creator><creator>Sukumar, N.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>200807</creationdate><title>Maximum Entropy Coordinates for Arbitrary Polytopes</title><author>Hormann, K. ; Sukumar, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4592-df0d6c087ab36984938c10fe62680fb27219103861f170b61cc0cd8e01775f653</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Entropy</topic><topic>G.1.1 [Numerical Analysis]: Interpolation formulas</topic><topic>G.1.6 [Numerical Analysis]: Constrained optimization</topic><topic>I.3.5 [Computer Graphics]: Geometric algorithms</topic><topic>Polytopes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hormann, K.</creatorcontrib><creatorcontrib>Sukumar, N.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Computer graphics forum</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hormann, K.</au><au>Sukumar, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Maximum Entropy Coordinates for Arbitrary Polytopes</atitle><jtitle>Computer graphics forum</jtitle><date>2008-07</date><risdate>2008</risdate><volume>27</volume><issue>5</issue><spage>1513</spage><epage>1520</epage><pages>1513-1520</pages><issn>0167-7055</issn><eissn>1467-8659</eissn><abstract>Barycentric coordinates can be used to express any point inside a triangle as a unique convex combination of the triangle's vertices, and they provide a convenient way to linearly interpolate data that is given at the vertices of a triangle. In recent years, the ideas of barycentric coordinates and barycentric interpolation have been extended to arbitrary polygons in the plane and general polytopes in higher dimensions, which in turn has led to novel solutions in applications like mesh parameterization, image warping, and mesh deformation. In this paper we introduce a new generalization of barycentric coordinates that stems from the maximum entropy principle. The coordinates are guaranteed to be positive inside any planar polygon, can be evaluated efficiently by solving a convex optimization problem with Newton's method, and experimental evidence indicates that they are smooth inside the domain. Moreover, the construction of these coordinates can be extended to arbitrary polyhedra and higher‐dimensional polytopes.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1467-8659.2008.01292.x</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0167-7055 |
ispartof | Computer graphics forum, 2008-07, Vol.27 (5), p.1513-1520 |
issn | 0167-7055 1467-8659 |
language | eng |
recordid | cdi_proquest_miscellaneous_34333220 |
source | Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; Art & Architecture Source; Wiley-Blackwell Read & Publish Collection |
subjects | Entropy G.1.1 [Numerical Analysis]: Interpolation formulas G.1.6 [Numerical Analysis]: Constrained optimization I.3.5 [Computer Graphics]: Geometric algorithms Polytopes |
title | Maximum Entropy Coordinates for Arbitrary Polytopes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T12%3A01%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Maximum%20Entropy%20Coordinates%20for%20Arbitrary%20Polytopes&rft.jtitle=Computer%20graphics%20forum&rft.au=Hormann,%20K.&rft.date=2008-07&rft.volume=27&rft.issue=5&rft.spage=1513&rft.epage=1520&rft.pages=1513-1520&rft.issn=0167-7055&rft.eissn=1467-8659&rft_id=info:doi/10.1111/j.1467-8659.2008.01292.x&rft_dat=%3Cproquest_cross%3E1564569461%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4592-df0d6c087ab36984938c10fe62680fb27219103861f170b61cc0cd8e01775f653%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=194654555&rft_id=info:pmid/&rfr_iscdi=true |