Loading…
Optimal designs for Cox regression
Optimal designs under a survival analysis framework have been rarely considered in the literature. In this paper, an optimal design theory is developed for the typical Cox regression problem. Failure time is modeled according to a probability distribution depending on some explanatory variables thro...
Saved in:
Published in: | Statistica Neerlandica 2009-05, Vol.63 (2), p.135-148 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4765-db48de8603f8c12562be59b67978c98c1535df48f0f3cb4196632f3d7701d6533 |
---|---|
cites | cdi_FETCH-LOGICAL-c4765-db48de8603f8c12562be59b67978c98c1535df48f0f3cb4196632f3d7701d6533 |
container_end_page | 148 |
container_issue | 2 |
container_start_page | 135 |
container_title | Statistica Neerlandica |
container_volume | 63 |
creator | López-Fidalgo, J. Rivas-López, M. J. Del Campo, R. |
description | Optimal designs under a survival analysis framework have been rarely considered in the literature. In this paper, an optimal design theory is developed for the typical Cox regression problem. Failure time is modeled according to a probability distribution depending on some explanatory variables through a linear model. At the end of the study, some units will not have failed and thus their time records will be censored. In order to deal with this problem from an experimental design point of view it will be necessary to assume a probability distribution for the time an experimental unit enters the study. Then an optimal conditional design will be computed at the beginning of the study for any possible given time. Thus, every time a new unit enters the study, there is an experimental design to be determined. A particular and simple case is used throughout the paper in order to illustrate the procedure. |
doi_str_mv | 10.1111/j.1467-9574.2009.00415.x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34336377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669421651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4765-db48de8603f8c12562be59b67978c98c1535df48f0f3cb4196632f3d7701d6533</originalsourceid><addsrcrecordid>eNqNkE1v1DAQhi1UJLaF_xD10FvCOOPPA4dq2y6gqj1Q4DjKh1OyzW5SO1t2_z1Og_bACUtjj-z3eTV-GUs4ZDyuj-uMC6VTK7XIcgCbAQgus_0btjg-nLAFANoUBOTv2GkIawCurVALdn4_jO2m6JLahfZxG5Km98my3yfePXoXQttv37O3TdEF9-Hveca-31w_LD-nt_erL8vL27QSWsm0LoWpnVGAjal4LlVeOmlLpa02lY1XEmXdCNNAg1UpuFUK8wZrrYHXSiKesYvZd_D9886FkTZtqFzXFVvX7wKhQFSodRSe_yNc9zu_jbNRDsYay2ESmVlU-T4E7xoafPyoPxAHmpKjNU0B0RQQTcnRa3K0j-jXGfVucNWRK7sijHEWRy-EhcK4HWK9oli0UxtriMVRRm9Dv8ZNNPs0m_1uO3f47yHo28PlXewin858G0a3P_KFfyKlUUv6ebeiqxgNXK1-kMY_uDuZfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>208989107</pqid></control><display><type>article</type><title>Optimal designs for Cox regression</title><source>Business Source Ultimate</source><source>Wiley</source><creator>López-Fidalgo, J. ; Rivas-López, M. J. ; Del Campo, R.</creator><creatorcontrib>López-Fidalgo, J. ; Rivas-López, M. J. ; Del Campo, R.</creatorcontrib><description>Optimal designs under a survival analysis framework have been rarely considered in the literature. In this paper, an optimal design theory is developed for the typical Cox regression problem. Failure time is modeled according to a probability distribution depending on some explanatory variables through a linear model. At the end of the study, some units will not have failed and thus their time records will be censored. In order to deal with this problem from an experimental design point of view it will be necessary to assume a probability distribution for the time an experimental unit enters the study. Then an optimal conditional design will be computed at the beginning of the study for any possible given time. Thus, every time a new unit enters the study, there is an experimental design to be determined. A particular and simple case is used throughout the paper in order to illustrate the procedure.</description><identifier>ISSN: 0039-0402</identifier><identifier>EISSN: 1467-9574</identifier><identifier>DOI: 10.1111/j.1467-9574.2009.00415.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>censored data ; Design optimization ; Design theory ; exponential distribution ; marginally restricted designs ; Mathematical analysis ; Optimization ; Probability distribution ; Regression analysis ; Studies ; Survival analysis</subject><ispartof>Statistica Neerlandica, 2009-05, Vol.63 (2), p.135-148</ispartof><rights>2009 The Authors. Journal compilation © 2009 VVS</rights><rights>Journal compilation © 2009 VVS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4765-db48de8603f8c12562be59b67978c98c1535df48f0f3cb4196632f3d7701d6533</citedby><cites>FETCH-LOGICAL-c4765-db48de8603f8c12562be59b67978c98c1535df48f0f3cb4196632f3d7701d6533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/blastanee/v_3a63_3ay_3a2009_3ai_3a2_3ap_3a135-148.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>López-Fidalgo, J.</creatorcontrib><creatorcontrib>Rivas-López, M. J.</creatorcontrib><creatorcontrib>Del Campo, R.</creatorcontrib><title>Optimal designs for Cox regression</title><title>Statistica Neerlandica</title><description>Optimal designs under a survival analysis framework have been rarely considered in the literature. In this paper, an optimal design theory is developed for the typical Cox regression problem. Failure time is modeled according to a probability distribution depending on some explanatory variables through a linear model. At the end of the study, some units will not have failed and thus their time records will be censored. In order to deal with this problem from an experimental design point of view it will be necessary to assume a probability distribution for the time an experimental unit enters the study. Then an optimal conditional design will be computed at the beginning of the study for any possible given time. Thus, every time a new unit enters the study, there is an experimental design to be determined. A particular and simple case is used throughout the paper in order to illustrate the procedure.</description><subject>censored data</subject><subject>Design optimization</subject><subject>Design theory</subject><subject>exponential distribution</subject><subject>marginally restricted designs</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>Probability distribution</subject><subject>Regression analysis</subject><subject>Studies</subject><subject>Survival analysis</subject><issn>0039-0402</issn><issn>1467-9574</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkE1v1DAQhi1UJLaF_xD10FvCOOPPA4dq2y6gqj1Q4DjKh1OyzW5SO1t2_z1Og_bACUtjj-z3eTV-GUs4ZDyuj-uMC6VTK7XIcgCbAQgus_0btjg-nLAFANoUBOTv2GkIawCurVALdn4_jO2m6JLahfZxG5Km98my3yfePXoXQttv37O3TdEF9-Hveca-31w_LD-nt_erL8vL27QSWsm0LoWpnVGAjal4LlVeOmlLpa02lY1XEmXdCNNAg1UpuFUK8wZrrYHXSiKesYvZd_D9886FkTZtqFzXFVvX7wKhQFSodRSe_yNc9zu_jbNRDsYay2ESmVlU-T4E7xoafPyoPxAHmpKjNU0B0RQQTcnRa3K0j-jXGfVucNWRK7sijHEWRy-EhcK4HWK9oli0UxtriMVRRm9Dv8ZNNPs0m_1uO3f47yHo28PlXewin858G0a3P_KFfyKlUUv6ebeiqxgNXK1-kMY_uDuZfA</recordid><startdate>200905</startdate><enddate>200905</enddate><creator>López-Fidalgo, J.</creator><creator>Rivas-López, M. J.</creator><creator>Del Campo, R.</creator><general>Blackwell Publishing Ltd</general><general>Netherlands Society for Statistics and Operations Research</general><scope>BSCLL</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200905</creationdate><title>Optimal designs for Cox regression</title><author>López-Fidalgo, J. ; Rivas-López, M. J. ; Del Campo, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4765-db48de8603f8c12562be59b67978c98c1535df48f0f3cb4196632f3d7701d6533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>censored data</topic><topic>Design optimization</topic><topic>Design theory</topic><topic>exponential distribution</topic><topic>marginally restricted designs</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>Probability distribution</topic><topic>Regression analysis</topic><topic>Studies</topic><topic>Survival analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López-Fidalgo, J.</creatorcontrib><creatorcontrib>Rivas-López, M. J.</creatorcontrib><creatorcontrib>Del Campo, R.</creatorcontrib><collection>Istex</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Statistica Neerlandica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López-Fidalgo, J.</au><au>Rivas-López, M. J.</au><au>Del Campo, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal designs for Cox regression</atitle><jtitle>Statistica Neerlandica</jtitle><date>2009-05</date><risdate>2009</risdate><volume>63</volume><issue>2</issue><spage>135</spage><epage>148</epage><pages>135-148</pages><issn>0039-0402</issn><eissn>1467-9574</eissn><abstract>Optimal designs under a survival analysis framework have been rarely considered in the literature. In this paper, an optimal design theory is developed for the typical Cox regression problem. Failure time is modeled according to a probability distribution depending on some explanatory variables through a linear model. At the end of the study, some units will not have failed and thus their time records will be censored. In order to deal with this problem from an experimental design point of view it will be necessary to assume a probability distribution for the time an experimental unit enters the study. Then an optimal conditional design will be computed at the beginning of the study for any possible given time. Thus, every time a new unit enters the study, there is an experimental design to be determined. A particular and simple case is used throughout the paper in order to illustrate the procedure.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1467-9574.2009.00415.x</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0039-0402 |
ispartof | Statistica Neerlandica, 2009-05, Vol.63 (2), p.135-148 |
issn | 0039-0402 1467-9574 |
language | eng |
recordid | cdi_proquest_miscellaneous_34336377 |
source | Business Source Ultimate; Wiley |
subjects | censored data Design optimization Design theory exponential distribution marginally restricted designs Mathematical analysis Optimization Probability distribution Regression analysis Studies Survival analysis |
title | Optimal designs for Cox regression |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A49%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20designs%20for%20Cox%20regression&rft.jtitle=Statistica%20Neerlandica&rft.au=L%C3%B3pez-Fidalgo,%20J.&rft.date=2009-05&rft.volume=63&rft.issue=2&rft.spage=135&rft.epage=148&rft.pages=135-148&rft.issn=0039-0402&rft.eissn=1467-9574&rft_id=info:doi/10.1111/j.1467-9574.2009.00415.x&rft_dat=%3Cproquest_cross%3E1669421651%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4765-db48de8603f8c12562be59b67978c98c1535df48f0f3cb4196632f3d7701d6533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=208989107&rft_id=info:pmid/&rfr_iscdi=true |