Loading…

Optimal designs for Cox regression

Optimal designs under a survival analysis framework have been rarely considered in the literature. In this paper, an optimal design theory is developed for the typical Cox regression problem. Failure time is modeled according to a probability distribution depending on some explanatory variables thro...

Full description

Saved in:
Bibliographic Details
Published in:Statistica Neerlandica 2009-05, Vol.63 (2), p.135-148
Main Authors: López-Fidalgo, J., Rivas-López, M. J., Del Campo, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4765-db48de8603f8c12562be59b67978c98c1535df48f0f3cb4196632f3d7701d6533
cites cdi_FETCH-LOGICAL-c4765-db48de8603f8c12562be59b67978c98c1535df48f0f3cb4196632f3d7701d6533
container_end_page 148
container_issue 2
container_start_page 135
container_title Statistica Neerlandica
container_volume 63
creator López-Fidalgo, J.
Rivas-López, M. J.
Del Campo, R.
description Optimal designs under a survival analysis framework have been rarely considered in the literature. In this paper, an optimal design theory is developed for the typical Cox regression problem. Failure time is modeled according to a probability distribution depending on some explanatory variables through a linear model. At the end of the study, some units will not have failed and thus their time records will be censored. In order to deal with this problem from an experimental design point of view it will be necessary to assume a probability distribution for the time an experimental unit enters the study. Then an optimal conditional design will be computed at the beginning of the study for any possible given time. Thus, every time a new unit enters the study, there is an experimental design to be determined. A particular and simple case is used throughout the paper in order to illustrate the procedure.
doi_str_mv 10.1111/j.1467-9574.2009.00415.x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34336377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669421651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4765-db48de8603f8c12562be59b67978c98c1535df48f0f3cb4196632f3d7701d6533</originalsourceid><addsrcrecordid>eNqNkE1v1DAQhi1UJLaF_xD10FvCOOPPA4dq2y6gqj1Q4DjKh1OyzW5SO1t2_z1Og_bACUtjj-z3eTV-GUs4ZDyuj-uMC6VTK7XIcgCbAQgus_0btjg-nLAFANoUBOTv2GkIawCurVALdn4_jO2m6JLahfZxG5Km98my3yfePXoXQttv37O3TdEF9-Hveca-31w_LD-nt_erL8vL27QSWsm0LoWpnVGAjal4LlVeOmlLpa02lY1XEmXdCNNAg1UpuFUK8wZrrYHXSiKesYvZd_D9886FkTZtqFzXFVvX7wKhQFSodRSe_yNc9zu_jbNRDsYay2ESmVlU-T4E7xoafPyoPxAHmpKjNU0B0RQQTcnRa3K0j-jXGfVucNWRK7sijHEWRy-EhcK4HWK9oli0UxtriMVRRm9Dv8ZNNPs0m_1uO3f47yHo28PlXewin858G0a3P_KFfyKlUUv6ebeiqxgNXK1-kMY_uDuZfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>208989107</pqid></control><display><type>article</type><title>Optimal designs for Cox regression</title><source>Business Source Ultimate</source><source>Wiley</source><creator>López-Fidalgo, J. ; Rivas-López, M. J. ; Del Campo, R.</creator><creatorcontrib>López-Fidalgo, J. ; Rivas-López, M. J. ; Del Campo, R.</creatorcontrib><description>Optimal designs under a survival analysis framework have been rarely considered in the literature. In this paper, an optimal design theory is developed for the typical Cox regression problem. Failure time is modeled according to a probability distribution depending on some explanatory variables through a linear model. At the end of the study, some units will not have failed and thus their time records will be censored. In order to deal with this problem from an experimental design point of view it will be necessary to assume a probability distribution for the time an experimental unit enters the study. Then an optimal conditional design will be computed at the beginning of the study for any possible given time. Thus, every time a new unit enters the study, there is an experimental design to be determined. A particular and simple case is used throughout the paper in order to illustrate the procedure.</description><identifier>ISSN: 0039-0402</identifier><identifier>EISSN: 1467-9574</identifier><identifier>DOI: 10.1111/j.1467-9574.2009.00415.x</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>censored data ; Design optimization ; Design theory ; exponential distribution ; marginally restricted designs ; Mathematical analysis ; Optimization ; Probability distribution ; Regression analysis ; Studies ; Survival analysis</subject><ispartof>Statistica Neerlandica, 2009-05, Vol.63 (2), p.135-148</ispartof><rights>2009 The Authors. Journal compilation © 2009 VVS</rights><rights>Journal compilation © 2009 VVS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4765-db48de8603f8c12562be59b67978c98c1535df48f0f3cb4196632f3d7701d6533</citedby><cites>FETCH-LOGICAL-c4765-db48de8603f8c12562be59b67978c98c1535df48f0f3cb4196632f3d7701d6533</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/blastanee/v_3a63_3ay_3a2009_3ai_3a2_3ap_3a135-148.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>López-Fidalgo, J.</creatorcontrib><creatorcontrib>Rivas-López, M. J.</creatorcontrib><creatorcontrib>Del Campo, R.</creatorcontrib><title>Optimal designs for Cox regression</title><title>Statistica Neerlandica</title><description>Optimal designs under a survival analysis framework have been rarely considered in the literature. In this paper, an optimal design theory is developed for the typical Cox regression problem. Failure time is modeled according to a probability distribution depending on some explanatory variables through a linear model. At the end of the study, some units will not have failed and thus their time records will be censored. In order to deal with this problem from an experimental design point of view it will be necessary to assume a probability distribution for the time an experimental unit enters the study. Then an optimal conditional design will be computed at the beginning of the study for any possible given time. Thus, every time a new unit enters the study, there is an experimental design to be determined. A particular and simple case is used throughout the paper in order to illustrate the procedure.</description><subject>censored data</subject><subject>Design optimization</subject><subject>Design theory</subject><subject>exponential distribution</subject><subject>marginally restricted designs</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>Probability distribution</subject><subject>Regression analysis</subject><subject>Studies</subject><subject>Survival analysis</subject><issn>0039-0402</issn><issn>1467-9574</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkE1v1DAQhi1UJLaF_xD10FvCOOPPA4dq2y6gqj1Q4DjKh1OyzW5SO1t2_z1Og_bACUtjj-z3eTV-GUs4ZDyuj-uMC6VTK7XIcgCbAQgus_0btjg-nLAFANoUBOTv2GkIawCurVALdn4_jO2m6JLahfZxG5Km98my3yfePXoXQttv37O3TdEF9-Hveca-31w_LD-nt_erL8vL27QSWsm0LoWpnVGAjal4LlVeOmlLpa02lY1XEmXdCNNAg1UpuFUK8wZrrYHXSiKesYvZd_D9886FkTZtqFzXFVvX7wKhQFSodRSe_yNc9zu_jbNRDsYay2ESmVlU-T4E7xoafPyoPxAHmpKjNU0B0RQQTcnRa3K0j-jXGfVucNWRK7sijHEWRy-EhcK4HWK9oli0UxtriMVRRm9Dv8ZNNPs0m_1uO3f47yHo28PlXewin858G0a3P_KFfyKlUUv6ebeiqxgNXK1-kMY_uDuZfA</recordid><startdate>200905</startdate><enddate>200905</enddate><creator>López-Fidalgo, J.</creator><creator>Rivas-López, M. J.</creator><creator>Del Campo, R.</creator><general>Blackwell Publishing Ltd</general><general>Netherlands Society for Statistics and Operations Research</general><scope>BSCLL</scope><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200905</creationdate><title>Optimal designs for Cox regression</title><author>López-Fidalgo, J. ; Rivas-López, M. J. ; Del Campo, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4765-db48de8603f8c12562be59b67978c98c1535df48f0f3cb4196632f3d7701d6533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>censored data</topic><topic>Design optimization</topic><topic>Design theory</topic><topic>exponential distribution</topic><topic>marginally restricted designs</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>Probability distribution</topic><topic>Regression analysis</topic><topic>Studies</topic><topic>Survival analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>López-Fidalgo, J.</creatorcontrib><creatorcontrib>Rivas-López, M. J.</creatorcontrib><creatorcontrib>Del Campo, R.</creatorcontrib><collection>Istex</collection><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Statistica Neerlandica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>López-Fidalgo, J.</au><au>Rivas-López, M. J.</au><au>Del Campo, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal designs for Cox regression</atitle><jtitle>Statistica Neerlandica</jtitle><date>2009-05</date><risdate>2009</risdate><volume>63</volume><issue>2</issue><spage>135</spage><epage>148</epage><pages>135-148</pages><issn>0039-0402</issn><eissn>1467-9574</eissn><abstract>Optimal designs under a survival analysis framework have been rarely considered in the literature. In this paper, an optimal design theory is developed for the typical Cox regression problem. Failure time is modeled according to a probability distribution depending on some explanatory variables through a linear model. At the end of the study, some units will not have failed and thus their time records will be censored. In order to deal with this problem from an experimental design point of view it will be necessary to assume a probability distribution for the time an experimental unit enters the study. Then an optimal conditional design will be computed at the beginning of the study for any possible given time. Thus, every time a new unit enters the study, there is an experimental design to be determined. A particular and simple case is used throughout the paper in order to illustrate the procedure.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1111/j.1467-9574.2009.00415.x</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0039-0402
ispartof Statistica Neerlandica, 2009-05, Vol.63 (2), p.135-148
issn 0039-0402
1467-9574
language eng
recordid cdi_proquest_miscellaneous_34336377
source Business Source Ultimate; Wiley
subjects censored data
Design optimization
Design theory
exponential distribution
marginally restricted designs
Mathematical analysis
Optimization
Probability distribution
Regression analysis
Studies
Survival analysis
title Optimal designs for Cox regression
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A49%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20designs%20for%20Cox%20regression&rft.jtitle=Statistica%20Neerlandica&rft.au=L%C3%B3pez-Fidalgo,%20J.&rft.date=2009-05&rft.volume=63&rft.issue=2&rft.spage=135&rft.epage=148&rft.pages=135-148&rft.issn=0039-0402&rft.eissn=1467-9574&rft_id=info:doi/10.1111/j.1467-9574.2009.00415.x&rft_dat=%3Cproquest_cross%3E1669421651%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4765-db48de8603f8c12562be59b67978c98c1535df48f0f3cb4196632f3d7701d6533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=208989107&rft_id=info:pmid/&rfr_iscdi=true