Loading…

Influence of minor alloying elements on the initial stages of oxidation of austenitic stainless steel materials

Surface oxidation of Fe‐19Cr‐17Ni, Fe‐19Cr‐18Ni‐1Al and TiC‐enriched Fe‐19Cr‐18Ni‐1Al alloys was investigated by photoelectron spectroscopy (PES). The experiments were conducted at 323 K in pure O2 (2.7 × 10−6 mbar). Composition and morphology of the nanoscale surface oxides were determined quantita...

Full description

Saved in:
Bibliographic Details
Published in:Surface and interface analysis 2008-08, Vol.40 (8), p.1149-1156
Main Authors: Jussila, P., Lahtonen, K., Lampimäki, M., Hirsimäki, M., Valden, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Surface oxidation of Fe‐19Cr‐17Ni, Fe‐19Cr‐18Ni‐1Al and TiC‐enriched Fe‐19Cr‐18Ni‐1Al alloys was investigated by photoelectron spectroscopy (PES). The experiments were conducted at 323 K in pure O2 (2.7 × 10−6 mbar). Composition and morphology of the nanoscale surface oxides were determined quantitatively by inelastic electron background analysis. Moreover, use of synchrotron radiation facilities were necessary to obtain improved sensitivity for studying minor alloying elements such as Al and Si. The results indicate oxygen‐induced segregation of Al, which significantly hinders the oxidation of the major alloying elements Fe and Cr. Ti remains in its inert carbide form. The relative concentration of Fe within the oxide layer was found to increase with the oxide‐layer thickness, indicating greater mobility of Fe relative to other alloying elements. Copyright © 2008 John Wiley & Sons, Ltd.
ISSN:0142-2421
1096-9918
DOI:10.1002/sia.2855