Loading…

Full Strain Tensor Treatment of Fiber Bragg Grating Sensors

Embedded fiber Bragg gratings can be subjected to arbitrary states of strain including shear strain. Such perturbations can cause coupling between polarization modes. Coupled-mode theory in Bragg gratings so far neglected this effect and only considered forward-backward coupling. Polarization mode c...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of quantum electronics 2009-05, Vol.45 (5), p.547-553
Main Authors: Muller, M.S., Hoffmann, L., Sandmair, A., Koch, A.W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Embedded fiber Bragg gratings can be subjected to arbitrary states of strain including shear strain. Such perturbations can cause coupling between polarization modes. Coupled-mode theory in Bragg gratings so far neglected this effect and only considered forward-backward coupling. Polarization mode coupling within a Bragg grating leads to interdependencies between Bragg reflection peaks which have so far been unaddressed. We formulate a full strain tensor treatment of fiber Bragg gratings, considering the coupling of the polarization modes within the grating. We give an approximation for the coupling coefficients affecting the polarization mode coupling and numerically solve the coupled-mode equations for representative states of strain. We show in which way shear strain affects the optical response of a grating and demonstrate how the fiber's beat length influences this characteristic.
ISSN:0018-9197
1558-1713
DOI:10.1109/JQE.2009.2013151