Loading…

Biological effects of narrow band pulsed electric fields

This paper describes the process of narrow band pulsed electric fields (NPEFs) and its effect on mammalian cells. The NPEF consists of a pulse modulated sinusoidal wave (PMSW), which allows delivery of well-defined electric fields in terms of frequency, field strength and deposition energy to the bi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on dielectrics and electrical insulation 2007-06, Vol.14 (3), p.663-668
Main Authors: Katsuki, S., Nomura, N., Koga, H., Akiyama, H., Uchida, I., Abe, S.-I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper describes the process of narrow band pulsed electric fields (NPEFs) and its effect on mammalian cells. The NPEF consists of a pulse modulated sinusoidal wave (PMSW), which allows delivery of well-defined electric fields in terms of frequency, field strength and deposition energy to the biological systems. 100 mus long sinusoidal electric fields with a frequency of 0.02, 2 or 50 MHz and field strengths of up to 2 kV/cm are applied to CHO cells with variation in the DNA density in the cells investigated by means of Acridine Orange assay. The experiments indicate that 50 MHz fields cause DNA degradation without cell membrane defects, while 0.02 MHz fields lead to an increase in membrane permeability which is similar to the effect known as electroporation. The intermediate frequency of 2 MHz influences both the membrane and DNA. It is demonstrated that the MHz range narrowband electric fields with the amplitude level of 1 kV/cm cause intracellular effects in mammalian cells.
ISSN:1070-9878
1558-4135
DOI:10.1109/TDEI.2007.369529