Loading…

Multiphase Bidirectional Flyback Converter Topology for Hybrid Electric Vehicles

For hybrid electric vehicles, the batteries and the drive dc link may be at different voltages. The batteries are at low voltage to obtain higher volumetric efficiencies, and the dc link is at higher voltage to have higher efficiency on the motor side. Therefore, a power interface between the batter...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial electronics (1982) 2009-01, Vol.56 (1), p.78-84
Main Authors: Bhattacharya, T., Giri, V.S., Mathew, K., Umanand, L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For hybrid electric vehicles, the batteries and the drive dc link may be at different voltages. The batteries are at low voltage to obtain higher volumetric efficiencies, and the dc link is at higher voltage to have higher efficiency on the motor side. Therefore, a power interface between the batteries and the drive's dc link is essential. This power interface should handle power flow from battery to motor, motor to battery, external genset to battery, and grid to battery. This paper proposes a multi-power-port topology which is capable of handling multiple power sources and still maintains simplicity and features like obtaining high gain, wide load variations, lower output-current ripple, and capability of parallel-battery energy due to the modular structure. The scheme incorporates a transformer winding technique which drastically reduces the leakage inductance of the coupled inductor. The development and testing of a bidirectional flyback dc-dc converter for hybrid electric vehicle is described in this paper. Simple hysteresis voltage control is used for dc-link voltage regulation. The experimental results are presented to show the working of the proposed converter.
ISSN:0278-0046
1557-9948
DOI:10.1109/TIE.2008.2004661