Loading…
Microporous layer for water morphology control in PEMFC
We have used environmental scanning electron microscope to observe vapor condensation and liquid water morphology and breakthrough in porous layers of polymer electrolyte membrane fuel cell. These suggest presence of large droplets and high liquid saturation at interface of the catalyst layer (CL) a...
Saved in:
Published in: | International journal of heat and mass transfer 2009-05, Vol.52 (11), p.2779-2791 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We have used environmental scanning electron microscope to observe vapor condensation and liquid water morphology and breakthrough in porous layers of polymer electrolyte membrane fuel cell. These suggest presence of large droplets and high liquid saturation at interface of the catalyst layer (CL) and gas diffusion layer (GDL), due to jump in pore size. We develop a model for morphology of liquid phase across multiple porous layers by use of both continuum and breakthrough (percolation) treatments. Using the results of this model we show the liquid morphologies deteriorate the efficiency of electrochemical reactions in CL and increase the water saturation in GDL. Then we show that inserting a microporous layer between CL and GDL reduces both the droplet size and liquid saturation and improves the cell performance. |
---|---|
ISSN: | 0017-9310 1879-2189 |
DOI: | 10.1016/j.ijheatmasstransfer.2009.01.002 |