Loading…
A Programmable Biochip for the Applications of Trapping and Adaptive Multisorting Using Dielectrophoresis Array
The adaptive biochip integrating dielectrophoresis (DEP) traps and a programmable multisorting DEP array for the multisorting applications of biomolecules such as proteins and DNA is proposed and demonstrated in this paper. In this research, movable beads are used as the mobile probes to capture the...
Saved in:
Published in: | Journal of microelectromechanical systems 2007-08, Vol.16 (4), p.816-825 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The adaptive biochip integrating dielectrophoresis (DEP) traps and a programmable multisorting DEP array for the multisorting applications of biomolecules such as proteins and DNA is proposed and demonstrated in this paper. In this research, movable beads are used as the mobile probes to capture the target protein molecules. These beads are chemically modified and immobilized with p50 proteins in our demonstration. An array of micropyramid DEP traps with a good levitation control on the height of the beads is located at the upstream to enhance the hybridization function of the mobile probes. The sample solution mixed with Cy3-I-kappa-B-alpha complex is used in the demonstration. A programmable multisorting DEP array that is located at the downstream sorts out the hybridized beads, which are fluorescently labeled based on the fluorescent detection signals. The magnitude and direction of the DEP force that is applied to the beads with/without labeling fluorescence in the multisorting DEP array are controlled via the distribution of time-variant nonuniform electric fields. The voltage on the individual electrode of the multisorting DEP array is preprogrammed and controlled by a LabVIEW controller with fluorescence detection feedback signals. In contrast to the research of Manaresi et al. [IEEE J. Solid-State Circuits, vol. 38, no. 12, p. 2297, 2003], which was proposed for trapping and sorting beads and cells via Dent traps, to our knowledge, the design of this biochip with the hybridization enhancement via micropyramid DEP traps and the adaptive multisorting DEP array for the mobile probes has never been proposed and implemented to date. |
---|---|
ISSN: | 1057-7157 1941-0158 |
DOI: | 10.1109/JMEMS.2007.897558 |