Loading…

Mechanical response of thin SMAW arc welded structures: Experimental and numerical investigation

The mechanical response of thin welded plates made of Ck45 steel during shielded metal arc welding (SMAW) is investigated by employing data from numerical results using the finite element method and laboratory experimental measurements. The aim of this paper is to investigate the effect of the therm...

Full description

Saved in:
Bibliographic Details
Published in:Theoretical and applied fracture mechanics 2009-04, Vol.51 (2), p.87-94
Main Authors: Karalis, D.G., Papazoglou, V.J., Pantelis, D.I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The mechanical response of thin welded plates made of Ck45 steel during shielded metal arc welding (SMAW) is investigated by employing data from numerical results using the finite element method and laboratory experimental measurements. The aim of this paper is to investigate the effect of the thermal uncertainty encountered during the thermal numerical analysis on the out-of-plane angular distortion of the welded panels. For this purpose a comparison between the numerical mechanical response (using the calibrated and as-predicted thermal history) and the experimental results is carried out. The effect of the microstructural transformations on the angular out-of-plane distortion is also investigated by introducing the material transformation within the numerical analysis by the simplest means in order to clearly demonstrate its influence. The same strategy is followed in order to investigate the effect of low-temperature martensitic transformation on the longitudinal residual stress field by properly combining experimental and numerical results and analyzing an idealized welding fabrication. Discussion is, finally, carried out regarding the design process of welded marine structures.
ISSN:0167-8442
1872-7638
DOI:10.1016/j.tafmec.2009.04.004