Loading…
Efficient online learning with Spiral Recurrent Neural Networks
Distributed intelligent systems like self-organizing wireless sensor and actuator networks are supposed to work mostly autonomous even under changing environmental conditions. This requires robust and efficient self-learning capabilities implementable on embedded systems with limited memory and comp...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Distributed intelligent systems like self-organizing wireless sensor and actuator networks are supposed to work mostly autonomous even under changing environmental conditions. This requires robust and efficient self-learning capabilities implementable on embedded systems with limited memory and computational power. We present a new solution called spiral recurrent neural networks with an online learning based on an extended Kalman filter and gradients as in real-time recurrent learning. We illustrate its performance using artificial and real-life time series and compare it to other approaches. Finally we describe a few potential applications. |
---|---|
ISSN: | 2161-4393 1522-4899 2161-4407 |
DOI: | 10.1109/IJCNN.2008.4634155 |