Loading…

Morphology, thermal, and rheological behavior of nylon 11/multi-walled carbon nanotube nanocomposites prepared by melt compounding

Nylon 11 (PA11) nanocomposites with different loadings of multi‐walled carbon nanotubes (MWNTs) were prepared by melt compounding. Scanning electron microscopy images on the fracture surfaces of the composites showed a uniform dispersion of MWNTs throughout the matrix. The presence of the MWNTs sign...

Full description

Saved in:
Bibliographic Details
Published in:Polymer engineering and science 2009-06, Vol.49 (6), p.1063-1068
Main Authors: Huang, Shu, Wang, Min, Liu, Tianxi, Zhang, Wei-De, Tjiu, Wuiwui Chauhari, He, Chaobin, Lu, Xuehong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nylon 11 (PA11) nanocomposites with different loadings of multi‐walled carbon nanotubes (MWNTs) were prepared by melt compounding. Scanning electron microscopy images on the fracture surfaces of the composites showed a uniform dispersion of MWNTs throughout the matrix. The presence of the MWNTs significantly improved the thermal stability and enhanced the storage modulus (G′) of the polymer matrix. Melt rheology studies showed that, compared with neat PA11, the incorporation of MWNT into the matrix resulted in higher complex viscosities (|η*|), storage modulus (G′), loss modulus (G″), and lower loss factor (tanδ). PA11 and its nanocomposites containing less than 1 wt% MWNTs showed similar frequency dependencies and reached a Newtonian plateau at low frequencies. For the nanocomposite with 2 wt% MWNTs, the regional network was destroyed and the orientation of the MWNTs during shearing exhibited a very strong shear thinning effect. The complex viscosities (|η*|) of the nanocomposites are larger than that of neat PA11 and decreased with increasing the temperature. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers
ISSN:0032-3888
1548-2634
DOI:10.1002/pen.21349