Loading…

Noise Analysis of an Air-Core Fiber Optic Gyroscope

We report the first measurements of the random walk (RW) of an air-core fiber optic gyroscope (FOG), a novel sensor that exhibits reduced thermal sensitivity thanks to the use of an air-core fiber. Comparing this data to the RW-equivalent noise of the gyro detection system alone and to a simple mode...

Full description

Saved in:
Bibliographic Details
Published in:IEEE photonics technology letters 2007-10, Vol.19 (19), p.1520-1522
Main Authors: Blin, S., Digonnet, M.J.F., Kino, G.S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report the first measurements of the random walk (RW) of an air-core fiber optic gyroscope (FOG), a novel sensor that exhibits reduced thermal sensitivity thanks to the use of an air-core fiber. Comparing this data to the RW-equivalent noise of the gyro detection system alone and to a simple model of detection noise demonstrates that the measured RW is unaffected by the high backscattering of the air-core fiber, but that it is limited instead by detector thermal noise for detected powers under ~5 muW and source excess noise above ~5 muW. Above this power level, the RW is found to be independent of detected power and equal to 0.021deg/radich, which is comparable to and as low as a conventional FOG with a similar scale factor.
ISSN:1041-1135
1941-0174
DOI:10.1109/LPT.2007.903878