Loading…

Effective Learning Rate Adjustment of Blind Source Separation Based on an Improved Particle Swarm Optimizer

Blind source separation (BSS) is a technique used to recover a set of source signals without prior information on the transformation matrix or the probability distributions of the source signals. In previous works on BSS, the choice of the learning rate would result in a competition between stabilit...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on evolutionary computation 2008-04, Vol.12 (2), p.242-251
Main Authors: HSIEH, Sheng-Ta, SUN, Tsung-Ying, LIN, Chun-Ling, LIU, Chan-Cheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c449t-c387d3cecb75c5754c31dbd52f05006c2b8a6b3262ea9081c590c74abb1e2f623
cites cdi_FETCH-LOGICAL-c449t-c387d3cecb75c5754c31dbd52f05006c2b8a6b3262ea9081c590c74abb1e2f623
container_end_page 251
container_issue 2
container_start_page 242
container_title IEEE transactions on evolutionary computation
container_volume 12
creator HSIEH, Sheng-Ta
SUN, Tsung-Ying
LIN, Chun-Ling
LIU, Chan-Cheng
description Blind source separation (BSS) is a technique used to recover a set of source signals without prior information on the transformation matrix or the probability distributions of the source signals. In previous works on BSS, the choice of the learning rate would result in a competition between stability and speed of convergence. In this paper, a particle swarm optimization (PSO)-based learning rate adjustment method is proposed for BSS, and a simple decision-making method is introduced for how the learning rate should be applied in the current time slot. In the experiments, samples of four and ten source signals were mixed and separated and the results were compared with other related approaches. The proposed approach exhibits rapid convergence, and produces more efficient and more stable independent component analysis algorithms, than other related approaches.
doi_str_mv 10.1109/TEVC.2007.898781
format article
fullrecord <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_proquest_miscellaneous_34505177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4358772</ieee_id><sourcerecordid>34505177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-c387d3cecb75c5754c31dbd52f05006c2b8a6b3262ea9081c590c74abb1e2f623</originalsourceid><addsrcrecordid>eNp9kdFrFDEQxhexYK2-C74EQX3ac5JNNslje5xt4aDFVvEtZLOzknM3e01yLfrXm-NKH3zo03zD_GaYma-q3lFYUAr6y-3qx3LBAORCaSUVfVEdU81pDcDal0WD0rWU6uer6nVKGwDKBdXH1e_VMKDL_h7JGm0MPvwi32xGctpvdilPGDKZB3I2-tCTm3kXHZIb3Npos58DObMJe1KEDeRy2sb5vqTXNmbvxgI-2DiRq232k_-L8U11NNgx4dvHeFJ9_7q6XV7U66vzy-Xpunac61y7Rsm-ceg6KZyQgruG9l0v2AACoHWsU7btGtYytBoUdUKDk9x2HUU2tKw5qT4f5pZ97naYspl8cjiONuC8S0ZT3nJVvlPIT8-SDRcgqJQF_PAfuCm_COUKo1omJZVUFAgOkItzShEHs41-svGPoWD2Jpm9SWZvkjmYVFo-Ps61ydlxiDY4n576GDCmFEDh3h84j4hPZd4IJSVr_gFUqJpK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862771715</pqid></control><display><type>article</type><title>Effective Learning Rate Adjustment of Blind Source Separation Based on an Improved Particle Swarm Optimizer</title><source>IEEE Xplore All Conference Series</source><creator>HSIEH, Sheng-Ta ; SUN, Tsung-Ying ; LIN, Chun-Ling ; LIU, Chan-Cheng</creator><creatorcontrib>HSIEH, Sheng-Ta ; SUN, Tsung-Ying ; LIN, Chun-Ling ; LIU, Chan-Cheng</creatorcontrib><description>Blind source separation (BSS) is a technique used to recover a set of source signals without prior information on the transformation matrix or the probability distributions of the source signals. In previous works on BSS, the choice of the learning rate would result in a competition between stability and speed of convergence. In this paper, a particle swarm optimization (PSO)-based learning rate adjustment method is proposed for BSS, and a simple decision-making method is introduced for how the learning rate should be applied in the current time slot. In the experiments, samples of four and ten source signals were mixed and separated and the results were compared with other related approaches. The proposed approach exhibits rapid convergence, and produces more efficient and more stable independent component analysis algorithms, than other related approaches.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2007.898781</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptive signal processing ; Algorithms ; Applied sciences ; Artificial intelligence ; Blind source separation ; Blind source separation (BSS) ; Blinds ; Computer science; control theory; systems ; Convergence ; Exact sciences and technology ; Independent component analysis ; Learning ; Learning and adaptive systems ; learning rate ; Least squares approximation ; Optimization ; Particle swarm optimization ; particle swarm optimization (PSO) ; Separation ; Signal processing algorithms ; Source separation ; Stability ; Sun ; Transformations ; turnaround factor (TF)</subject><ispartof>IEEE transactions on evolutionary computation, 2008-04, Vol.12 (2), p.242-251</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-c387d3cecb75c5754c31dbd52f05006c2b8a6b3262ea9081c590c74abb1e2f623</citedby><cites>FETCH-LOGICAL-c449t-c387d3cecb75c5754c31dbd52f05006c2b8a6b3262ea9081c590c74abb1e2f623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4358772$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54553,54794,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4358772$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20228800$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>HSIEH, Sheng-Ta</creatorcontrib><creatorcontrib>SUN, Tsung-Ying</creatorcontrib><creatorcontrib>LIN, Chun-Ling</creatorcontrib><creatorcontrib>LIU, Chan-Cheng</creatorcontrib><title>Effective Learning Rate Adjustment of Blind Source Separation Based on an Improved Particle Swarm Optimizer</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>Blind source separation (BSS) is a technique used to recover a set of source signals without prior information on the transformation matrix or the probability distributions of the source signals. In previous works on BSS, the choice of the learning rate would result in a competition between stability and speed of convergence. In this paper, a particle swarm optimization (PSO)-based learning rate adjustment method is proposed for BSS, and a simple decision-making method is introduced for how the learning rate should be applied in the current time slot. In the experiments, samples of four and ten source signals were mixed and separated and the results were compared with other related approaches. The proposed approach exhibits rapid convergence, and produces more efficient and more stable independent component analysis algorithms, than other related approaches.</description><subject>Adaptive signal processing</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Blind source separation</subject><subject>Blind source separation (BSS)</subject><subject>Blinds</subject><subject>Computer science; control theory; systems</subject><subject>Convergence</subject><subject>Exact sciences and technology</subject><subject>Independent component analysis</subject><subject>Learning</subject><subject>Learning and adaptive systems</subject><subject>learning rate</subject><subject>Least squares approximation</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>particle swarm optimization (PSO)</subject><subject>Separation</subject><subject>Signal processing algorithms</subject><subject>Source separation</subject><subject>Stability</subject><subject>Sun</subject><subject>Transformations</subject><subject>turnaround factor (TF)</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kdFrFDEQxhexYK2-C74EQX3ac5JNNslje5xt4aDFVvEtZLOzknM3e01yLfrXm-NKH3zo03zD_GaYma-q3lFYUAr6y-3qx3LBAORCaSUVfVEdU81pDcDal0WD0rWU6uer6nVKGwDKBdXH1e_VMKDL_h7JGm0MPvwi32xGctpvdilPGDKZB3I2-tCTm3kXHZIb3Npos58DObMJe1KEDeRy2sb5vqTXNmbvxgI-2DiRq232k_-L8U11NNgx4dvHeFJ9_7q6XV7U66vzy-Xpunac61y7Rsm-ceg6KZyQgruG9l0v2AACoHWsU7btGtYytBoUdUKDk9x2HUU2tKw5qT4f5pZ97naYspl8cjiONuC8S0ZT3nJVvlPIT8-SDRcgqJQF_PAfuCm_COUKo1omJZVUFAgOkItzShEHs41-svGPoWD2Jpm9SWZvkjmYVFo-Ps61ydlxiDY4n576GDCmFEDh3h84j4hPZd4IJSVr_gFUqJpK</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>HSIEH, Sheng-Ta</creator><creator>SUN, Tsung-Ying</creator><creator>LIN, Chun-Ling</creator><creator>LIU, Chan-Cheng</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080401</creationdate><title>Effective Learning Rate Adjustment of Blind Source Separation Based on an Improved Particle Swarm Optimizer</title><author>HSIEH, Sheng-Ta ; SUN, Tsung-Ying ; LIN, Chun-Ling ; LIU, Chan-Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-c387d3cecb75c5754c31dbd52f05006c2b8a6b3262ea9081c590c74abb1e2f623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adaptive signal processing</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Blind source separation</topic><topic>Blind source separation (BSS)</topic><topic>Blinds</topic><topic>Computer science; control theory; systems</topic><topic>Convergence</topic><topic>Exact sciences and technology</topic><topic>Independent component analysis</topic><topic>Learning</topic><topic>Learning and adaptive systems</topic><topic>learning rate</topic><topic>Least squares approximation</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>particle swarm optimization (PSO)</topic><topic>Separation</topic><topic>Signal processing algorithms</topic><topic>Source separation</topic><topic>Stability</topic><topic>Sun</topic><topic>Transformations</topic><topic>turnaround factor (TF)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HSIEH, Sheng-Ta</creatorcontrib><creatorcontrib>SUN, Tsung-Ying</creatorcontrib><creatorcontrib>LIN, Chun-Ling</creatorcontrib><creatorcontrib>LIU, Chan-Cheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HSIEH, Sheng-Ta</au><au>SUN, Tsung-Ying</au><au>LIN, Chun-Ling</au><au>LIU, Chan-Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective Learning Rate Adjustment of Blind Source Separation Based on an Improved Particle Swarm Optimizer</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2008-04-01</date><risdate>2008</risdate><volume>12</volume><issue>2</issue><spage>242</spage><epage>251</epage><pages>242-251</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>Blind source separation (BSS) is a technique used to recover a set of source signals without prior information on the transformation matrix or the probability distributions of the source signals. In previous works on BSS, the choice of the learning rate would result in a competition between stability and speed of convergence. In this paper, a particle swarm optimization (PSO)-based learning rate adjustment method is proposed for BSS, and a simple decision-making method is introduced for how the learning rate should be applied in the current time slot. In the experiments, samples of four and ten source signals were mixed and separated and the results were compared with other related approaches. The proposed approach exhibits rapid convergence, and produces more efficient and more stable independent component analysis algorithms, than other related approaches.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TEVC.2007.898781</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof IEEE transactions on evolutionary computation, 2008-04, Vol.12 (2), p.242-251
issn 1089-778X
1941-0026
language eng
recordid cdi_proquest_miscellaneous_34505177
source IEEE Xplore All Conference Series
subjects Adaptive signal processing
Algorithms
Applied sciences
Artificial intelligence
Blind source separation
Blind source separation (BSS)
Blinds
Computer science
control theory
systems
Convergence
Exact sciences and technology
Independent component analysis
Learning
Learning and adaptive systems
learning rate
Least squares approximation
Optimization
Particle swarm optimization
particle swarm optimization (PSO)
Separation
Signal processing algorithms
Source separation
Stability
Sun
Transformations
turnaround factor (TF)
title Effective Learning Rate Adjustment of Blind Source Separation Based on an Improved Particle Swarm Optimizer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T12%3A53%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20Learning%20Rate%20Adjustment%20of%20Blind%20Source%20Separation%20Based%20on%20an%20Improved%20Particle%20Swarm%20Optimizer&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=HSIEH,%20Sheng-Ta&rft.date=2008-04-01&rft.volume=12&rft.issue=2&rft.spage=242&rft.epage=251&rft.pages=242-251&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2007.898781&rft_dat=%3Cproquest_CHZPO%3E34505177%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c449t-c387d3cecb75c5754c31dbd52f05006c2b8a6b3262ea9081c590c74abb1e2f623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=862771715&rft_id=info:pmid/&rft_ieee_id=4358772&rfr_iscdi=true