Loading…
Effective Learning Rate Adjustment of Blind Source Separation Based on an Improved Particle Swarm Optimizer
Blind source separation (BSS) is a technique used to recover a set of source signals without prior information on the transformation matrix or the probability distributions of the source signals. In previous works on BSS, the choice of the learning rate would result in a competition between stabilit...
Saved in:
Published in: | IEEE transactions on evolutionary computation 2008-04, Vol.12 (2), p.242-251 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c449t-c387d3cecb75c5754c31dbd52f05006c2b8a6b3262ea9081c590c74abb1e2f623 |
---|---|
cites | cdi_FETCH-LOGICAL-c449t-c387d3cecb75c5754c31dbd52f05006c2b8a6b3262ea9081c590c74abb1e2f623 |
container_end_page | 251 |
container_issue | 2 |
container_start_page | 242 |
container_title | IEEE transactions on evolutionary computation |
container_volume | 12 |
creator | HSIEH, Sheng-Ta SUN, Tsung-Ying LIN, Chun-Ling LIU, Chan-Cheng |
description | Blind source separation (BSS) is a technique used to recover a set of source signals without prior information on the transformation matrix or the probability distributions of the source signals. In previous works on BSS, the choice of the learning rate would result in a competition between stability and speed of convergence. In this paper, a particle swarm optimization (PSO)-based learning rate adjustment method is proposed for BSS, and a simple decision-making method is introduced for how the learning rate should be applied in the current time slot. In the experiments, samples of four and ten source signals were mixed and separated and the results were compared with other related approaches. The proposed approach exhibits rapid convergence, and produces more efficient and more stable independent component analysis algorithms, than other related approaches. |
doi_str_mv | 10.1109/TEVC.2007.898781 |
format | article |
fullrecord | <record><control><sourceid>proquest_CHZPO</sourceid><recordid>TN_cdi_proquest_miscellaneous_34505177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4358772</ieee_id><sourcerecordid>34505177</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-c387d3cecb75c5754c31dbd52f05006c2b8a6b3262ea9081c590c74abb1e2f623</originalsourceid><addsrcrecordid>eNp9kdFrFDEQxhexYK2-C74EQX3ac5JNNslje5xt4aDFVvEtZLOzknM3e01yLfrXm-NKH3zo03zD_GaYma-q3lFYUAr6y-3qx3LBAORCaSUVfVEdU81pDcDal0WD0rWU6uer6nVKGwDKBdXH1e_VMKDL_h7JGm0MPvwi32xGctpvdilPGDKZB3I2-tCTm3kXHZIb3Npos58DObMJe1KEDeRy2sb5vqTXNmbvxgI-2DiRq232k_-L8U11NNgx4dvHeFJ9_7q6XV7U66vzy-Xpunac61y7Rsm-ceg6KZyQgruG9l0v2AACoHWsU7btGtYytBoUdUKDk9x2HUU2tKw5qT4f5pZ97naYspl8cjiONuC8S0ZT3nJVvlPIT8-SDRcgqJQF_PAfuCm_COUKo1omJZVUFAgOkItzShEHs41-svGPoWD2Jpm9SWZvkjmYVFo-Ps61ydlxiDY4n576GDCmFEDh3h84j4hPZd4IJSVr_gFUqJpK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>862771715</pqid></control><display><type>article</type><title>Effective Learning Rate Adjustment of Blind Source Separation Based on an Improved Particle Swarm Optimizer</title><source>IEEE Xplore All Conference Series</source><creator>HSIEH, Sheng-Ta ; SUN, Tsung-Ying ; LIN, Chun-Ling ; LIU, Chan-Cheng</creator><creatorcontrib>HSIEH, Sheng-Ta ; SUN, Tsung-Ying ; LIN, Chun-Ling ; LIU, Chan-Cheng</creatorcontrib><description>Blind source separation (BSS) is a technique used to recover a set of source signals without prior information on the transformation matrix or the probability distributions of the source signals. In previous works on BSS, the choice of the learning rate would result in a competition between stability and speed of convergence. In this paper, a particle swarm optimization (PSO)-based learning rate adjustment method is proposed for BSS, and a simple decision-making method is introduced for how the learning rate should be applied in the current time slot. In the experiments, samples of four and ten source signals were mixed and separated and the results were compared with other related approaches. The proposed approach exhibits rapid convergence, and produces more efficient and more stable independent component analysis algorithms, than other related approaches.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2007.898781</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Adaptive signal processing ; Algorithms ; Applied sciences ; Artificial intelligence ; Blind source separation ; Blind source separation (BSS) ; Blinds ; Computer science; control theory; systems ; Convergence ; Exact sciences and technology ; Independent component analysis ; Learning ; Learning and adaptive systems ; learning rate ; Least squares approximation ; Optimization ; Particle swarm optimization ; particle swarm optimization (PSO) ; Separation ; Signal processing algorithms ; Source separation ; Stability ; Sun ; Transformations ; turnaround factor (TF)</subject><ispartof>IEEE transactions on evolutionary computation, 2008-04, Vol.12 (2), p.242-251</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-c387d3cecb75c5754c31dbd52f05006c2b8a6b3262ea9081c590c74abb1e2f623</citedby><cites>FETCH-LOGICAL-c449t-c387d3cecb75c5754c31dbd52f05006c2b8a6b3262ea9081c590c74abb1e2f623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4358772$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54553,54794,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/4358772$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20228800$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>HSIEH, Sheng-Ta</creatorcontrib><creatorcontrib>SUN, Tsung-Ying</creatorcontrib><creatorcontrib>LIN, Chun-Ling</creatorcontrib><creatorcontrib>LIU, Chan-Cheng</creatorcontrib><title>Effective Learning Rate Adjustment of Blind Source Separation Based on an Improved Particle Swarm Optimizer</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>Blind source separation (BSS) is a technique used to recover a set of source signals without prior information on the transformation matrix or the probability distributions of the source signals. In previous works on BSS, the choice of the learning rate would result in a competition between stability and speed of convergence. In this paper, a particle swarm optimization (PSO)-based learning rate adjustment method is proposed for BSS, and a simple decision-making method is introduced for how the learning rate should be applied in the current time slot. In the experiments, samples of four and ten source signals were mixed and separated and the results were compared with other related approaches. The proposed approach exhibits rapid convergence, and produces more efficient and more stable independent component analysis algorithms, than other related approaches.</description><subject>Adaptive signal processing</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Blind source separation</subject><subject>Blind source separation (BSS)</subject><subject>Blinds</subject><subject>Computer science; control theory; systems</subject><subject>Convergence</subject><subject>Exact sciences and technology</subject><subject>Independent component analysis</subject><subject>Learning</subject><subject>Learning and adaptive systems</subject><subject>learning rate</subject><subject>Least squares approximation</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>particle swarm optimization (PSO)</subject><subject>Separation</subject><subject>Signal processing algorithms</subject><subject>Source separation</subject><subject>Stability</subject><subject>Sun</subject><subject>Transformations</subject><subject>turnaround factor (TF)</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kdFrFDEQxhexYK2-C74EQX3ac5JNNslje5xt4aDFVvEtZLOzknM3e01yLfrXm-NKH3zo03zD_GaYma-q3lFYUAr6y-3qx3LBAORCaSUVfVEdU81pDcDal0WD0rWU6uer6nVKGwDKBdXH1e_VMKDL_h7JGm0MPvwi32xGctpvdilPGDKZB3I2-tCTm3kXHZIb3Npos58DObMJe1KEDeRy2sb5vqTXNmbvxgI-2DiRq232k_-L8U11NNgx4dvHeFJ9_7q6XV7U66vzy-Xpunac61y7Rsm-ceg6KZyQgruG9l0v2AACoHWsU7btGtYytBoUdUKDk9x2HUU2tKw5qT4f5pZ97naYspl8cjiONuC8S0ZT3nJVvlPIT8-SDRcgqJQF_PAfuCm_COUKo1omJZVUFAgOkItzShEHs41-svGPoWD2Jpm9SWZvkjmYVFo-Ps61ydlxiDY4n576GDCmFEDh3h84j4hPZd4IJSVr_gFUqJpK</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>HSIEH, Sheng-Ta</creator><creator>SUN, Tsung-Ying</creator><creator>LIN, Chun-Ling</creator><creator>LIU, Chan-Cheng</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080401</creationdate><title>Effective Learning Rate Adjustment of Blind Source Separation Based on an Improved Particle Swarm Optimizer</title><author>HSIEH, Sheng-Ta ; SUN, Tsung-Ying ; LIN, Chun-Ling ; LIU, Chan-Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-c387d3cecb75c5754c31dbd52f05006c2b8a6b3262ea9081c590c74abb1e2f623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adaptive signal processing</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Blind source separation</topic><topic>Blind source separation (BSS)</topic><topic>Blinds</topic><topic>Computer science; control theory; systems</topic><topic>Convergence</topic><topic>Exact sciences and technology</topic><topic>Independent component analysis</topic><topic>Learning</topic><topic>Learning and adaptive systems</topic><topic>learning rate</topic><topic>Least squares approximation</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>particle swarm optimization (PSO)</topic><topic>Separation</topic><topic>Signal processing algorithms</topic><topic>Source separation</topic><topic>Stability</topic><topic>Sun</topic><topic>Transformations</topic><topic>turnaround factor (TF)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>HSIEH, Sheng-Ta</creatorcontrib><creatorcontrib>SUN, Tsung-Ying</creatorcontrib><creatorcontrib>LIN, Chun-Ling</creatorcontrib><creatorcontrib>LIU, Chan-Cheng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>HSIEH, Sheng-Ta</au><au>SUN, Tsung-Ying</au><au>LIN, Chun-Ling</au><au>LIU, Chan-Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effective Learning Rate Adjustment of Blind Source Separation Based on an Improved Particle Swarm Optimizer</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2008-04-01</date><risdate>2008</risdate><volume>12</volume><issue>2</issue><spage>242</spage><epage>251</epage><pages>242-251</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>Blind source separation (BSS) is a technique used to recover a set of source signals without prior information on the transformation matrix or the probability distributions of the source signals. In previous works on BSS, the choice of the learning rate would result in a competition between stability and speed of convergence. In this paper, a particle swarm optimization (PSO)-based learning rate adjustment method is proposed for BSS, and a simple decision-making method is introduced for how the learning rate should be applied in the current time slot. In the experiments, samples of four and ten source signals were mixed and separated and the results were compared with other related approaches. The proposed approach exhibits rapid convergence, and produces more efficient and more stable independent component analysis algorithms, than other related approaches.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TEVC.2007.898781</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | IEEE transactions on evolutionary computation, 2008-04, Vol.12 (2), p.242-251 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_proquest_miscellaneous_34505177 |
source | IEEE Xplore All Conference Series |
subjects | Adaptive signal processing Algorithms Applied sciences Artificial intelligence Blind source separation Blind source separation (BSS) Blinds Computer science control theory systems Convergence Exact sciences and technology Independent component analysis Learning Learning and adaptive systems learning rate Least squares approximation Optimization Particle swarm optimization particle swarm optimization (PSO) Separation Signal processing algorithms Source separation Stability Sun Transformations turnaround factor (TF) |
title | Effective Learning Rate Adjustment of Blind Source Separation Based on an Improved Particle Swarm Optimizer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T12%3A53%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effective%20Learning%20Rate%20Adjustment%20of%20Blind%20Source%20Separation%20Based%20on%20an%20Improved%20Particle%20Swarm%20Optimizer&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=HSIEH,%20Sheng-Ta&rft.date=2008-04-01&rft.volume=12&rft.issue=2&rft.spage=242&rft.epage=251&rft.pages=242-251&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2007.898781&rft_dat=%3Cproquest_CHZPO%3E34505177%3C/proquest_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c449t-c387d3cecb75c5754c31dbd52f05006c2b8a6b3262ea9081c590c74abb1e2f623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=862771715&rft_id=info:pmid/&rft_ieee_id=4358772&rfr_iscdi=true |