Loading…

Mantle deformation beneath the Chicxulub impact crater

The surface expression of impact craters is well-known from visual images of the Moon, Venus, and other planets and planetary bodies, but constraints on deep structure of these craters is largely limited to interpretations of gravity data. Although the gravity models are non-unique, they do suggest...

Full description

Saved in:
Bibliographic Details
Published in:Earth and planetary science letters 2009-06, Vol.284 (1), p.249-257
Main Authors: Christeson, Gail L., Collins, Gareth S., Morgan, Joanna V., Gulick, Sean P.S., Barton, Penny J., Warner, Michael R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a429t-a6a6abfb05bb09d0cd229b35b11b74aaee448ff666260d33920c399a16e13a463
cites cdi_FETCH-LOGICAL-a429t-a6a6abfb05bb09d0cd229b35b11b74aaee448ff666260d33920c399a16e13a463
container_end_page 257
container_issue 1
container_start_page 249
container_title Earth and planetary science letters
container_volume 284
creator Christeson, Gail L.
Collins, Gareth S.
Morgan, Joanna V.
Gulick, Sean P.S.
Barton, Penny J.
Warner, Michael R.
description The surface expression of impact craters is well-known from visual images of the Moon, Venus, and other planets and planetary bodies, but constraints on deep structure of these craters is largely limited to interpretations of gravity data. Although the gravity models are non-unique, they do suggest that large impact craters are associated with structure at the base of the crust. We use seismic data to map Moho (crust–mantle interface) topography beneath the Chicxulub crater, the youngest and best preserved of the three largest known terrestrial impact craters. The Moho is upwarped by ~ 1.5–2 km near the center of the Chicxulub crater, and depressed by ~ 0.5–1.0 km at a distance of ~ 30–55 km from the crater center. A comparison with numerical modeling results reveal that immediately following impact a transient crater reached a maximum depth of at least 30 km prior to collapse, and that subsequent collapse of the transient crater uplifted target material from deep below the crater floor. These results demonstrate that deformation from large terrestrial impacts can extend to the base of the continental crust. A similar Moho topography is also modeled for some large lunar and Martian craters, which suggests that mantle deformation may play a prominent role in large crater formation.
doi_str_mv 10.1016/j.epsl.2009.04.033
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34506501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0012821X09002635</els_id><sourcerecordid>34506501</sourcerecordid><originalsourceid>FETCH-LOGICAL-a429t-a6a6abfb05bb09d0cd229b35b11b74aaee448ff666260d33920c399a16e13a463</originalsourceid><addsrcrecordid>eNqFkEtLAzEUhYMoWKt_wNWs3M1485i0ATdStAoVNwrdhSRzh6bMyyQj-u-dUtfKXdzN-Q6cj5BrCgUFKm_3BQ6xKRiAKkAUwPkJmVG-LHOgfHtKZgCU5UtGt-fkIsY9AMhSqhmRL6ZLDWYV1n1oTfJ9l1ns0KRdlnaYrXbefY3NaDPfDsalzAWTMFySs9o0Ea9-_5y8Pz68rZ7yzev6eXW_yY1gKuVGTmdrC6W1oCpwFWPK8tJSahfCGEQhlnUtpWQSKs4VA8eVMlQi5UZIPic3x94h9B8jxqRbHx02jemwH6PmopyGTBv_CzKQC65KNQXZMehCH2PAWg_BtyZ8awr64FLv9cGlPrjUIPTkcoLujhBOWz89Bh2dx85h5QO6pKve_4X_AHtrfOM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20673959</pqid></control><display><type>article</type><title>Mantle deformation beneath the Chicxulub impact crater</title><source>Elsevier</source><creator>Christeson, Gail L. ; Collins, Gareth S. ; Morgan, Joanna V. ; Gulick, Sean P.S. ; Barton, Penny J. ; Warner, Michael R.</creator><creatorcontrib>Christeson, Gail L. ; Collins, Gareth S. ; Morgan, Joanna V. ; Gulick, Sean P.S. ; Barton, Penny J. ; Warner, Michael R.</creatorcontrib><description>The surface expression of impact craters is well-known from visual images of the Moon, Venus, and other planets and planetary bodies, but constraints on deep structure of these craters is largely limited to interpretations of gravity data. Although the gravity models are non-unique, they do suggest that large impact craters are associated with structure at the base of the crust. We use seismic data to map Moho (crust–mantle interface) topography beneath the Chicxulub crater, the youngest and best preserved of the three largest known terrestrial impact craters. The Moho is upwarped by ~ 1.5–2 km near the center of the Chicxulub crater, and depressed by ~ 0.5–1.0 km at a distance of ~ 30–55 km from the crater center. A comparison with numerical modeling results reveal that immediately following impact a transient crater reached a maximum depth of at least 30 km prior to collapse, and that subsequent collapse of the transient crater uplifted target material from deep below the crater floor. These results demonstrate that deformation from large terrestrial impacts can extend to the base of the continental crust. A similar Moho topography is also modeled for some large lunar and Martian craters, which suggests that mantle deformation may play a prominent role in large crater formation.</description><identifier>ISSN: 0012-821X</identifier><identifier>EISSN: 1385-013X</identifier><identifier>DOI: 10.1016/j.epsl.2009.04.033</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Chicxulub ; crater ; Moho ; terrestrial impact</subject><ispartof>Earth and planetary science letters, 2009-06, Vol.284 (1), p.249-257</ispartof><rights>2009 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a429t-a6a6abfb05bb09d0cd229b35b11b74aaee448ff666260d33920c399a16e13a463</citedby><cites>FETCH-LOGICAL-a429t-a6a6abfb05bb09d0cd229b35b11b74aaee448ff666260d33920c399a16e13a463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Christeson, Gail L.</creatorcontrib><creatorcontrib>Collins, Gareth S.</creatorcontrib><creatorcontrib>Morgan, Joanna V.</creatorcontrib><creatorcontrib>Gulick, Sean P.S.</creatorcontrib><creatorcontrib>Barton, Penny J.</creatorcontrib><creatorcontrib>Warner, Michael R.</creatorcontrib><title>Mantle deformation beneath the Chicxulub impact crater</title><title>Earth and planetary science letters</title><description>The surface expression of impact craters is well-known from visual images of the Moon, Venus, and other planets and planetary bodies, but constraints on deep structure of these craters is largely limited to interpretations of gravity data. Although the gravity models are non-unique, they do suggest that large impact craters are associated with structure at the base of the crust. We use seismic data to map Moho (crust–mantle interface) topography beneath the Chicxulub crater, the youngest and best preserved of the three largest known terrestrial impact craters. The Moho is upwarped by ~ 1.5–2 km near the center of the Chicxulub crater, and depressed by ~ 0.5–1.0 km at a distance of ~ 30–55 km from the crater center. A comparison with numerical modeling results reveal that immediately following impact a transient crater reached a maximum depth of at least 30 km prior to collapse, and that subsequent collapse of the transient crater uplifted target material from deep below the crater floor. These results demonstrate that deformation from large terrestrial impacts can extend to the base of the continental crust. A similar Moho topography is also modeled for some large lunar and Martian craters, which suggests that mantle deformation may play a prominent role in large crater formation.</description><subject>Chicxulub</subject><subject>crater</subject><subject>Moho</subject><subject>terrestrial impact</subject><issn>0012-821X</issn><issn>1385-013X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkEtLAzEUhYMoWKt_wNWs3M1485i0ATdStAoVNwrdhSRzh6bMyyQj-u-dUtfKXdzN-Q6cj5BrCgUFKm_3BQ6xKRiAKkAUwPkJmVG-LHOgfHtKZgCU5UtGt-fkIsY9AMhSqhmRL6ZLDWYV1n1oTfJ9l1ns0KRdlnaYrXbefY3NaDPfDsalzAWTMFySs9o0Ea9-_5y8Pz68rZ7yzev6eXW_yY1gKuVGTmdrC6W1oCpwFWPK8tJSahfCGEQhlnUtpWQSKs4VA8eVMlQi5UZIPic3x94h9B8jxqRbHx02jemwH6PmopyGTBv_CzKQC65KNQXZMehCH2PAWg_BtyZ8awr64FLv9cGlPrjUIPTkcoLujhBOWz89Bh2dx85h5QO6pKve_4X_AHtrfOM</recordid><startdate>20090630</startdate><enddate>20090630</enddate><creator>Christeson, Gail L.</creator><creator>Collins, Gareth S.</creator><creator>Morgan, Joanna V.</creator><creator>Gulick, Sean P.S.</creator><creator>Barton, Penny J.</creator><creator>Warner, Michael R.</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20090630</creationdate><title>Mantle deformation beneath the Chicxulub impact crater</title><author>Christeson, Gail L. ; Collins, Gareth S. ; Morgan, Joanna V. ; Gulick, Sean P.S. ; Barton, Penny J. ; Warner, Michael R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a429t-a6a6abfb05bb09d0cd229b35b11b74aaee448ff666260d33920c399a16e13a463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Chicxulub</topic><topic>crater</topic><topic>Moho</topic><topic>terrestrial impact</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Christeson, Gail L.</creatorcontrib><creatorcontrib>Collins, Gareth S.</creatorcontrib><creatorcontrib>Morgan, Joanna V.</creatorcontrib><creatorcontrib>Gulick, Sean P.S.</creatorcontrib><creatorcontrib>Barton, Penny J.</creatorcontrib><creatorcontrib>Warner, Michael R.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Earth and planetary science letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christeson, Gail L.</au><au>Collins, Gareth S.</au><au>Morgan, Joanna V.</au><au>Gulick, Sean P.S.</au><au>Barton, Penny J.</au><au>Warner, Michael R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mantle deformation beneath the Chicxulub impact crater</atitle><jtitle>Earth and planetary science letters</jtitle><date>2009-06-30</date><risdate>2009</risdate><volume>284</volume><issue>1</issue><spage>249</spage><epage>257</epage><pages>249-257</pages><issn>0012-821X</issn><eissn>1385-013X</eissn><abstract>The surface expression of impact craters is well-known from visual images of the Moon, Venus, and other planets and planetary bodies, but constraints on deep structure of these craters is largely limited to interpretations of gravity data. Although the gravity models are non-unique, they do suggest that large impact craters are associated with structure at the base of the crust. We use seismic data to map Moho (crust–mantle interface) topography beneath the Chicxulub crater, the youngest and best preserved of the three largest known terrestrial impact craters. The Moho is upwarped by ~ 1.5–2 km near the center of the Chicxulub crater, and depressed by ~ 0.5–1.0 km at a distance of ~ 30–55 km from the crater center. A comparison with numerical modeling results reveal that immediately following impact a transient crater reached a maximum depth of at least 30 km prior to collapse, and that subsequent collapse of the transient crater uplifted target material from deep below the crater floor. These results demonstrate that deformation from large terrestrial impacts can extend to the base of the continental crust. A similar Moho topography is also modeled for some large lunar and Martian craters, which suggests that mantle deformation may play a prominent role in large crater formation.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.epsl.2009.04.033</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-821X
ispartof Earth and planetary science letters, 2009-06, Vol.284 (1), p.249-257
issn 0012-821X
1385-013X
language eng
recordid cdi_proquest_miscellaneous_34506501
source Elsevier
subjects Chicxulub
crater
Moho
terrestrial impact
title Mantle deformation beneath the Chicxulub impact crater
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A59%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mantle%20deformation%20beneath%20the%20Chicxulub%20impact%20crater&rft.jtitle=Earth%20and%20planetary%20science%20letters&rft.au=Christeson,%20Gail%20L.&rft.date=2009-06-30&rft.volume=284&rft.issue=1&rft.spage=249&rft.epage=257&rft.pages=249-257&rft.issn=0012-821X&rft.eissn=1385-013X&rft_id=info:doi/10.1016/j.epsl.2009.04.033&rft_dat=%3Cproquest_cross%3E34506501%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a429t-a6a6abfb05bb09d0cd229b35b11b74aaee448ff666260d33920c399a16e13a463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20673959&rft_id=info:pmid/&rfr_iscdi=true