Loading…
Neural network approach for food temperature prediction during solar drying
In the present study, the application of artificial neural network (ANN) for prediction of temperature variation of food product during solar drying is investigated. The important climatic variables namely, solar radiation intensity and ambient air temperature are considered as the input parameters...
Saved in:
Published in: | International journal of thermal sciences 2009-07, Vol.48 (7), p.1452-1459 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the present study, the application of artificial neural network (ANN) for prediction of temperature variation of food product during solar drying is investigated. The important climatic variables namely, solar radiation intensity and ambient air temperature are considered as the input parameters for ANN modeling. Experimental data on potato cylinders and slices obtained with mixed mode solar dryer for 9 typical days of different months of the year were used for training and testing the neural network. A methodology is proposed for development of optimal neural network. Results of analysis reveal that the network with 4 neurons and logsig transfer function and trainrp back propagation algorithm is the most appropriate approach for both potato cylinders and slices based on minimum measures of error. In order to test the worthiness of ANN model for prediction of food temperature variation, the analytical heat diffusion model with appropriate boundary conditions and statistical model are also proposed. Based on error analysis results, the prediction capability of ANN model is found to be the best of all the prediction models investigated, irrespective of food sample geometry. |
---|---|
ISSN: | 1290-0729 1778-4166 |
DOI: | 10.1016/j.ijthermalsci.2008.11.014 |