Loading…

Performance Analysis and Improvement Methods for Channel Resource Management Strategies of LEO-MSS With Multiparty Traffic

A novel analytical framework for the accurate and efficient evaluation of the performance of channel resource management strategies for low Earth orbit mobile satellite systems (LEO-MSSs) supporting multiparty traffic is presented. By considering a fixed channel reservation (FCR) scheme as a benchma...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on vehicular technology 2008-11, Vol.57 (6), p.3832-3842
Main Authors: Zhipeng Wang, Mathiopoulos, P.T., Schober, R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A novel analytical framework for the accurate and efficient evaluation of the performance of channel resource management strategies for low Earth orbit mobile satellite systems (LEO-MSSs) supporting multiparty traffic is presented. By considering a fixed channel reservation (FCR) scheme as a benchmark, an efficient and accurate analytical approach is developed for obtaining the performance of multiparty traffic under various quality-of-service (QoS) performance measure criteria. The proposed approach is based on a Markovian queuing model, and its correctness and accuracy have been verified by means of computer simulations. To improve the overall performance of LEO-MSS, two novel resource management techniques are introduced and analyzed. The first one is an efficient adaptive channel reservation (ACR) scheme, which allows priority to be given to handover requests that are generated by multiparty traffic. The second one is a new call queuing (NCQ) policy, which efficiently reduces the new call blocking probability with little impact on other system performance measures, such as call dropping probability and unsuccessful call probability. Various performance results show that when ACR is used in conjunction with NCQ, extremely low blocking and handover failure probabilities can be achieved for multiparty traffic.
ISSN:0018-9545
1939-9359
DOI:10.1109/TVT.2008.919979