Loading…

Strong convergence theorems by the hybrid method for families of mappings in Banach spaces

Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is Gâteaux differentiable and let { T n } be a family of mappings of C into itself such that the set of all common fixed points of { T n } is nonempty. We consider a sequence { x n } generated by the hybrid meth...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear analysis 2009-08, Vol.71 (3), p.812-818
Main Authors: Nakajo, Kazuhide, Shimoji, Kazuya, Takahashi, Wataru
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c421t-870a816980cb040701c60ee6ef67ee41fce546c7425a4c4c6f7692733a3405fa3
cites cdi_FETCH-LOGICAL-c421t-870a816980cb040701c60ee6ef67ee41fce546c7425a4c4c6f7692733a3405fa3
container_end_page 818
container_issue 3
container_start_page 812
container_title Nonlinear analysis
container_volume 71
creator Nakajo, Kazuhide
Shimoji, Kazuya
Takahashi, Wataru
description Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is Gâteaux differentiable and let { T n } be a family of mappings of C into itself such that the set of all common fixed points of { T n } is nonempty. We consider a sequence { x n } generated by the hybrid method in mathematical programming. And we give the conditions of { T n } under which { x n } converges strongly to a common fixed point of { T n } and generalize the results of [K. Nakajo, K. Shimoji, W. Takahashi, Strong convergence theorems by the hybrid method for families of nonexpansive mappings in Hilbert spaces, Taiwanese J. Math. 10 (2006) 339–360; S. Ohsawa, W. Takahashi, Strong convergence theorems for resolvents of maximal monotone operators in Banach spaces, Arch. Math. 81 (2003) 439–445].
doi_str_mv 10.1016/j.na.2008.10.108
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34532030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X08006937</els_id><sourcerecordid>34532030</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-870a816980cb040701c60ee6ef67ee41fce546c7425a4c4c6f7692733a3405fa3</originalsourceid><addsrcrecordid>eNp1UE1vEzEQtRBIhJY7R1_gtmH8sd4tN6hoQarEoSAhLtZkMk4c7dqLva2Uf8-GVNw4zejpvTdvnhBvFKwVKPf-sE641gD9-i_SPxMr1XemabVqn4sVGKeb1rqfL8WrWg8AoDrjVuLX_Vxy2knK6ZHLjhOxnPecC49Vbo6nXe6PmxK3cuR5n7cy5CIDjnGIXGUOcsRpimlXZUzyEyakvawTEtdL8SLgUPn107wQP24-f7_-0tx9u_16_fGuIavV3PQdYK_cVQ-0AQsdKHLA7Di4jtmqQLzkps7qFi1ZcqFzV7ozBo2FNqC5EO_OvlPJvx-4zn6MlXgYMHF-qN7Y1mgwsBDhTKSSay0c_FTiiOXoFfhTif7gE_pTiWekXyRvn7yxEg6hYKJY_-m0skt80Avvw5nHy6OPkYuvFE9lbmNhmv02x_8f-QNIJIXx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34532030</pqid></control><display><type>article</type><title>Strong convergence theorems by the hybrid method for families of mappings in Banach spaces</title><source>ScienceDirect Freedom Collection</source><source>Backfile Package - Mathematics</source><creator>Nakajo, Kazuhide ; Shimoji, Kazuya ; Takahashi, Wataru</creator><creatorcontrib>Nakajo, Kazuhide ; Shimoji, Kazuya ; Takahashi, Wataru</creatorcontrib><description>Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is Gâteaux differentiable and let { T n } be a family of mappings of C into itself such that the set of all common fixed points of { T n } is nonempty. We consider a sequence { x n } generated by the hybrid method in mathematical programming. And we give the conditions of { T n } under which { x n } converges strongly to a common fixed point of { T n } and generalize the results of [K. Nakajo, K. Shimoji, W. Takahashi, Strong convergence theorems by the hybrid method for families of nonexpansive mappings in Hilbert spaces, Taiwanese J. Math. 10 (2006) 339–360; S. Ohsawa, W. Takahashi, Strong convergence theorems for resolvents of maximal monotone operators in Banach spaces, Arch. Math. 81 (2003) 439–445].</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2008.10.108</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Convex feasibility problem ; Exact sciences and technology ; Functional analysis ; Hybrid method ; Mathematical analysis ; Mathematics ; Monotone operator ; Proximal point algorithm ; Sciences and techniques of general use ; Strong convergence</subject><ispartof>Nonlinear analysis, 2009-08, Vol.71 (3), p.812-818</ispartof><rights>2008 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-870a816980cb040701c60ee6ef67ee41fce546c7425a4c4c6f7692733a3405fa3</citedby><cites>FETCH-LOGICAL-c421t-870a816980cb040701c60ee6ef67ee41fce546c7425a4c4c6f7692733a3405fa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X08006937$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3564,27924,27925,46003</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21487002$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Nakajo, Kazuhide</creatorcontrib><creatorcontrib>Shimoji, Kazuya</creatorcontrib><creatorcontrib>Takahashi, Wataru</creatorcontrib><title>Strong convergence theorems by the hybrid method for families of mappings in Banach spaces</title><title>Nonlinear analysis</title><description>Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is Gâteaux differentiable and let { T n } be a family of mappings of C into itself such that the set of all common fixed points of { T n } is nonempty. We consider a sequence { x n } generated by the hybrid method in mathematical programming. And we give the conditions of { T n } under which { x n } converges strongly to a common fixed point of { T n } and generalize the results of [K. Nakajo, K. Shimoji, W. Takahashi, Strong convergence theorems by the hybrid method for families of nonexpansive mappings in Hilbert spaces, Taiwanese J. Math. 10 (2006) 339–360; S. Ohsawa, W. Takahashi, Strong convergence theorems for resolvents of maximal monotone operators in Banach spaces, Arch. Math. 81 (2003) 439–445].</description><subject>Convex feasibility problem</subject><subject>Exact sciences and technology</subject><subject>Functional analysis</subject><subject>Hybrid method</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Monotone operator</subject><subject>Proximal point algorithm</subject><subject>Sciences and techniques of general use</subject><subject>Strong convergence</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp1UE1vEzEQtRBIhJY7R1_gtmH8sd4tN6hoQarEoSAhLtZkMk4c7dqLva2Uf8-GVNw4zejpvTdvnhBvFKwVKPf-sE641gD9-i_SPxMr1XemabVqn4sVGKeb1rqfL8WrWg8AoDrjVuLX_Vxy2knK6ZHLjhOxnPecC49Vbo6nXe6PmxK3cuR5n7cy5CIDjnGIXGUOcsRpimlXZUzyEyakvawTEtdL8SLgUPn107wQP24-f7_-0tx9u_16_fGuIavV3PQdYK_cVQ-0AQsdKHLA7Di4jtmqQLzkps7qFi1ZcqFzV7ozBo2FNqC5EO_OvlPJvx-4zn6MlXgYMHF-qN7Y1mgwsBDhTKSSay0c_FTiiOXoFfhTif7gE_pTiWekXyRvn7yxEg6hYKJY_-m0skt80Avvw5nHy6OPkYuvFE9lbmNhmv02x_8f-QNIJIXx</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Nakajo, Kazuhide</creator><creator>Shimoji, Kazuya</creator><creator>Takahashi, Wataru</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20090801</creationdate><title>Strong convergence theorems by the hybrid method for families of mappings in Banach spaces</title><author>Nakajo, Kazuhide ; Shimoji, Kazuya ; Takahashi, Wataru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-870a816980cb040701c60ee6ef67ee41fce546c7425a4c4c6f7692733a3405fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Convex feasibility problem</topic><topic>Exact sciences and technology</topic><topic>Functional analysis</topic><topic>Hybrid method</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Monotone operator</topic><topic>Proximal point algorithm</topic><topic>Sciences and techniques of general use</topic><topic>Strong convergence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakajo, Kazuhide</creatorcontrib><creatorcontrib>Shimoji, Kazuya</creatorcontrib><creatorcontrib>Takahashi, Wataru</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakajo, Kazuhide</au><au>Shimoji, Kazuya</au><au>Takahashi, Wataru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Strong convergence theorems by the hybrid method for families of mappings in Banach spaces</atitle><jtitle>Nonlinear analysis</jtitle><date>2009-08-01</date><risdate>2009</risdate><volume>71</volume><issue>3</issue><spage>812</spage><epage>818</epage><pages>812-818</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>Let C be a nonempty closed convex subset of a uniformly convex Banach space E whose norm is Gâteaux differentiable and let { T n } be a family of mappings of C into itself such that the set of all common fixed points of { T n } is nonempty. We consider a sequence { x n } generated by the hybrid method in mathematical programming. And we give the conditions of { T n } under which { x n } converges strongly to a common fixed point of { T n } and generalize the results of [K. Nakajo, K. Shimoji, W. Takahashi, Strong convergence theorems by the hybrid method for families of nonexpansive mappings in Hilbert spaces, Taiwanese J. Math. 10 (2006) 339–360; S. Ohsawa, W. Takahashi, Strong convergence theorems for resolvents of maximal monotone operators in Banach spaces, Arch. Math. 81 (2003) 439–445].</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2008.10.108</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2009-08, Vol.71 (3), p.812-818
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_miscellaneous_34532030
source ScienceDirect Freedom Collection; Backfile Package - Mathematics
subjects Convex feasibility problem
Exact sciences and technology
Functional analysis
Hybrid method
Mathematical analysis
Mathematics
Monotone operator
Proximal point algorithm
Sciences and techniques of general use
Strong convergence
title Strong convergence theorems by the hybrid method for families of mappings in Banach spaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A50%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Strong%20convergence%20theorems%20by%20the%20hybrid%20method%20for%20families%20of%20mappings%20in%20Banach%20spaces&rft.jtitle=Nonlinear%20analysis&rft.au=Nakajo,%20Kazuhide&rft.date=2009-08-01&rft.volume=71&rft.issue=3&rft.spage=812&rft.epage=818&rft.pages=812-818&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2008.10.108&rft_dat=%3Cproquest_cross%3E34532030%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c421t-870a816980cb040701c60ee6ef67ee41fce546c7425a4c4c6f7692733a3405fa3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=34532030&rft_id=info:pmid/&rfr_iscdi=true