Loading…

Study of the hyperfine structure, thermal stability and electric–dielectric properties of vanadium iron phosphate glasses

In the present study the thermal analysis, hyperfine structure and electric transport properties were investigated for the (60− X) P 2O 5 (20+ X) V 2O 5 20Fe 2O 3 [PVF] ( X=10, 15, 20, 30 and 40 mol%) glasses. The glassy state of the samples was characterized using DTA and Mössbauer spectroscopy. Tw...

Full description

Saved in:
Bibliographic Details
Published in:Physica. B, Condensed matter Condensed matter, 2009-07, Vol.404 (14), p.2058-2064
Main Authors: Shapaan, M., Shabaan, E.R., Mostafa, A.G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-87dc6ec915cb75b140cd2e336189099b59ce2eb9f06f09ba234d6a789560d90c3
cites cdi_FETCH-LOGICAL-c364t-87dc6ec915cb75b140cd2e336189099b59ce2eb9f06f09ba234d6a789560d90c3
container_end_page 2064
container_issue 14
container_start_page 2058
container_title Physica. B, Condensed matter
container_volume 404
creator Shapaan, M.
Shabaan, E.R.
Mostafa, A.G.
description In the present study the thermal analysis, hyperfine structure and electric transport properties were investigated for the (60− X) P 2O 5 (20+ X) V 2O 5 20Fe 2O 3 [PVF] ( X=10, 15, 20, 30 and 40 mol%) glasses. The glassy state of the samples was characterized using DTA and Mössbauer spectroscopy. Two glass transition temperatures T g1 and T g2 were detected at the DTA traces of the investigated system. The glassy sample with X=20 mol% (PVF3) is of the highest glass thermal stability where Δ T=177±2 K. Also, it has the highest value of crystallization activation energy for the first and the second crystallization peaks (305 and 316±3 kJ/mol%) among the other samples. The obtained ME spectra showed the presence of Fe 3+ alone located in the tetrahedral and octahedral sites. Increasing V 2O 5 content, the dc conductivity increases while the activation energy decreases. The room temperature dc conductivity is typically 2.9×10 −7–2.5×10 −5 with an activation energy 0.60–0.37±0.011 eV. The power law exponent s was found to be temperature dependent and exhibited a minimum, for PVF3 and PVF4. The dielectric constant ε 1( ω) increases with increasing V 2O 5 content which was attributed to the increase in the deformation of glass network.
doi_str_mv 10.1016/j.physb.2009.03.042
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34537239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921452609002002</els_id><sourcerecordid>34537239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-87dc6ec915cb75b140cd2e336189099b59ce2eb9f06f09ba234d6a789560d90c3</originalsourceid><addsrcrecordid>eNp9kMtu1TAQhi0EEqelT9CNN3RFgi-JEy-6QBU3qRILYG059qTxUU4SPE6liA3vwBvyJPj0lC6ZzWg8__ye-Qi55KzkjKu3-3IZNuxKwZgumSxZJZ6RHW8bWQgu6-dkx7TgRVUL9ZKcIe5ZDt7wHfn5Na1-o3NP0wB02BaIfZiAYoqrS2uEN8dGPNgxP9kujCFt1E6ewgguxeD-_Prtw7-CLnHODikAHi3v7WR9WA80xHmiyzDjMtgE9G60iICvyIvejggXj_mcfP_w_tvNp-L2y8fPN-9uCydVlYq28U6B07x2XVN3vGLOC5BS8VYzrbtaOxDQ6Z6pnunOCll5ZZtW14p5zZw8J1cn37zdjxUwmUNAB-NoJ5hXNLKqZSOkzkJ5Ero4I0bozRLDwcbNcGaOoM3ePIA2R9CGSZNB56nXj_YWnR37aCcX8GlUcFWLlldZd33SQb71PkA06AJMDnyIGZ_xc_jvP38B-eKZAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34537239</pqid></control><display><type>article</type><title>Study of the hyperfine structure, thermal stability and electric–dielectric properties of vanadium iron phosphate glasses</title><source>Elsevier</source><creator>Shapaan, M. ; Shabaan, E.R. ; Mostafa, A.G.</creator><creatorcontrib>Shapaan, M. ; Shabaan, E.R. ; Mostafa, A.G.</creatorcontrib><description>In the present study the thermal analysis, hyperfine structure and electric transport properties were investigated for the (60− X) P 2O 5 (20+ X) V 2O 5 20Fe 2O 3 [PVF] ( X=10, 15, 20, 30 and 40 mol%) glasses. The glassy state of the samples was characterized using DTA and Mössbauer spectroscopy. Two glass transition temperatures T g1 and T g2 were detected at the DTA traces of the investigated system. The glassy sample with X=20 mol% (PVF3) is of the highest glass thermal stability where Δ T=177±2 K. Also, it has the highest value of crystallization activation energy for the first and the second crystallization peaks (305 and 316±3 kJ/mol%) among the other samples. The obtained ME spectra showed the presence of Fe 3+ alone located in the tetrahedral and octahedral sites. Increasing V 2O 5 content, the dc conductivity increases while the activation energy decreases. The room temperature dc conductivity is typically 2.9×10 −7–2.5×10 −5 with an activation energy 0.60–0.37±0.011 eV. The power law exponent s was found to be temperature dependent and exhibited a minimum, for PVF3 and PVF4. The dielectric constant ε 1( ω) increases with increasing V 2O 5 content which was attributed to the increase in the deformation of glass network.</description><identifier>ISSN: 0921-4526</identifier><identifier>EISSN: 1873-2135</identifier><identifier>DOI: 10.1016/j.physb.2009.03.042</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Conductivity of specific materials ; Dielectric properties of solids and liquids ; Dielectric relaxation ; Dielectrics, piezoelectrics, and ferroelectrics and their properties ; Disordered solids ; Electric transport properties ; Electronic transport in condensed matter ; Equations of state, phase equilibria, and phase transitions ; Exact sciences and technology ; Glass transition temperature ; Glass transitions ; ME spectroscopy ; Permittivity (dielectric function) ; Physics ; Specific phase transitions ; Structure analysis</subject><ispartof>Physica. B, Condensed matter, 2009-07, Vol.404 (14), p.2058-2064</ispartof><rights>2009 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-87dc6ec915cb75b140cd2e336189099b59ce2eb9f06f09ba234d6a789560d90c3</citedby><cites>FETCH-LOGICAL-c364t-87dc6ec915cb75b140cd2e336189099b59ce2eb9f06f09ba234d6a789560d90c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21652814$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Shapaan, M.</creatorcontrib><creatorcontrib>Shabaan, E.R.</creatorcontrib><creatorcontrib>Mostafa, A.G.</creatorcontrib><title>Study of the hyperfine structure, thermal stability and electric–dielectric properties of vanadium iron phosphate glasses</title><title>Physica. B, Condensed matter</title><description>In the present study the thermal analysis, hyperfine structure and electric transport properties were investigated for the (60− X) P 2O 5 (20+ X) V 2O 5 20Fe 2O 3 [PVF] ( X=10, 15, 20, 30 and 40 mol%) glasses. The glassy state of the samples was characterized using DTA and Mössbauer spectroscopy. Two glass transition temperatures T g1 and T g2 were detected at the DTA traces of the investigated system. The glassy sample with X=20 mol% (PVF3) is of the highest glass thermal stability where Δ T=177±2 K. Also, it has the highest value of crystallization activation energy for the first and the second crystallization peaks (305 and 316±3 kJ/mol%) among the other samples. The obtained ME spectra showed the presence of Fe 3+ alone located in the tetrahedral and octahedral sites. Increasing V 2O 5 content, the dc conductivity increases while the activation energy decreases. The room temperature dc conductivity is typically 2.9×10 −7–2.5×10 −5 with an activation energy 0.60–0.37±0.011 eV. The power law exponent s was found to be temperature dependent and exhibited a minimum, for PVF3 and PVF4. The dielectric constant ε 1( ω) increases with increasing V 2O 5 content which was attributed to the increase in the deformation of glass network.</description><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Conductivity of specific materials</subject><subject>Dielectric properties of solids and liquids</subject><subject>Dielectric relaxation</subject><subject>Dielectrics, piezoelectrics, and ferroelectrics and their properties</subject><subject>Disordered solids</subject><subject>Electric transport properties</subject><subject>Electronic transport in condensed matter</subject><subject>Equations of state, phase equilibria, and phase transitions</subject><subject>Exact sciences and technology</subject><subject>Glass transition temperature</subject><subject>Glass transitions</subject><subject>ME spectroscopy</subject><subject>Permittivity (dielectric function)</subject><subject>Physics</subject><subject>Specific phase transitions</subject><subject>Structure analysis</subject><issn>0921-4526</issn><issn>1873-2135</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kMtu1TAQhi0EEqelT9CNN3RFgi-JEy-6QBU3qRILYG059qTxUU4SPE6liA3vwBvyJPj0lC6ZzWg8__ye-Qi55KzkjKu3-3IZNuxKwZgumSxZJZ6RHW8bWQgu6-dkx7TgRVUL9ZKcIe5ZDt7wHfn5Na1-o3NP0wB02BaIfZiAYoqrS2uEN8dGPNgxP9kujCFt1E6ewgguxeD-_Prtw7-CLnHODikAHi3v7WR9WA80xHmiyzDjMtgE9G60iICvyIvejggXj_mcfP_w_tvNp-L2y8fPN-9uCydVlYq28U6B07x2XVN3vGLOC5BS8VYzrbtaOxDQ6Z6pnunOCll5ZZtW14p5zZw8J1cn37zdjxUwmUNAB-NoJ5hXNLKqZSOkzkJ5Ero4I0bozRLDwcbNcGaOoM3ePIA2R9CGSZNB56nXj_YWnR37aCcX8GlUcFWLlldZd33SQb71PkA06AJMDnyIGZ_xc_jvP38B-eKZAw</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Shapaan, M.</creator><creator>Shabaan, E.R.</creator><creator>Mostafa, A.G.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20090701</creationdate><title>Study of the hyperfine structure, thermal stability and electric–dielectric properties of vanadium iron phosphate glasses</title><author>Shapaan, M. ; Shabaan, E.R. ; Mostafa, A.G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-87dc6ec915cb75b140cd2e336189099b59ce2eb9f06f09ba234d6a789560d90c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Conductivity of specific materials</topic><topic>Dielectric properties of solids and liquids</topic><topic>Dielectric relaxation</topic><topic>Dielectrics, piezoelectrics, and ferroelectrics and their properties</topic><topic>Disordered solids</topic><topic>Electric transport properties</topic><topic>Electronic transport in condensed matter</topic><topic>Equations of state, phase equilibria, and phase transitions</topic><topic>Exact sciences and technology</topic><topic>Glass transition temperature</topic><topic>Glass transitions</topic><topic>ME spectroscopy</topic><topic>Permittivity (dielectric function)</topic><topic>Physics</topic><topic>Specific phase transitions</topic><topic>Structure analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shapaan, M.</creatorcontrib><creatorcontrib>Shabaan, E.R.</creatorcontrib><creatorcontrib>Mostafa, A.G.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica. B, Condensed matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shapaan, M.</au><au>Shabaan, E.R.</au><au>Mostafa, A.G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of the hyperfine structure, thermal stability and electric–dielectric properties of vanadium iron phosphate glasses</atitle><jtitle>Physica. B, Condensed matter</jtitle><date>2009-07-01</date><risdate>2009</risdate><volume>404</volume><issue>14</issue><spage>2058</spage><epage>2064</epage><pages>2058-2064</pages><issn>0921-4526</issn><eissn>1873-2135</eissn><abstract>In the present study the thermal analysis, hyperfine structure and electric transport properties were investigated for the (60− X) P 2O 5 (20+ X) V 2O 5 20Fe 2O 3 [PVF] ( X=10, 15, 20, 30 and 40 mol%) glasses. The glassy state of the samples was characterized using DTA and Mössbauer spectroscopy. Two glass transition temperatures T g1 and T g2 were detected at the DTA traces of the investigated system. The glassy sample with X=20 mol% (PVF3) is of the highest glass thermal stability where Δ T=177±2 K. Also, it has the highest value of crystallization activation energy for the first and the second crystallization peaks (305 and 316±3 kJ/mol%) among the other samples. The obtained ME spectra showed the presence of Fe 3+ alone located in the tetrahedral and octahedral sites. Increasing V 2O 5 content, the dc conductivity increases while the activation energy decreases. The room temperature dc conductivity is typically 2.9×10 −7–2.5×10 −5 with an activation energy 0.60–0.37±0.011 eV. The power law exponent s was found to be temperature dependent and exhibited a minimum, for PVF3 and PVF4. The dielectric constant ε 1( ω) increases with increasing V 2O 5 content which was attributed to the increase in the deformation of glass network.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><doi>10.1016/j.physb.2009.03.042</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0921-4526
ispartof Physica. B, Condensed matter, 2009-07, Vol.404 (14), p.2058-2064
issn 0921-4526
1873-2135
language eng
recordid cdi_proquest_miscellaneous_34537239
source Elsevier
subjects Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Conductivity of specific materials
Dielectric properties of solids and liquids
Dielectric relaxation
Dielectrics, piezoelectrics, and ferroelectrics and their properties
Disordered solids
Electric transport properties
Electronic transport in condensed matter
Equations of state, phase equilibria, and phase transitions
Exact sciences and technology
Glass transition temperature
Glass transitions
ME spectroscopy
Permittivity (dielectric function)
Physics
Specific phase transitions
Structure analysis
title Study of the hyperfine structure, thermal stability and electric–dielectric properties of vanadium iron phosphate glasses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T18%3A25%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20the%20hyperfine%20structure,%20thermal%20stability%20and%20electric%E2%80%93dielectric%20properties%20of%20vanadium%20iron%20phosphate%20glasses&rft.jtitle=Physica.%20B,%20Condensed%20matter&rft.au=Shapaan,%20M.&rft.date=2009-07-01&rft.volume=404&rft.issue=14&rft.spage=2058&rft.epage=2064&rft.pages=2058-2064&rft.issn=0921-4526&rft.eissn=1873-2135&rft_id=info:doi/10.1016/j.physb.2009.03.042&rft_dat=%3Cproquest_cross%3E34537239%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-87dc6ec915cb75b140cd2e336189099b59ce2eb9f06f09ba234d6a789560d90c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=34537239&rft_id=info:pmid/&rfr_iscdi=true