Loading…

Transport of mercury in the Arctic atmosphere: Evidence for a spring-time net sink and summer-time source

In the Arctic, atmospheric concentrations of gaseous elemental mercury (GEM) can decrease strongly in spring when mercury is deposited to the snow. Some studies suggest mercury can accumulate in the snow while others suggest rapid reemission after atmospheric mercury depletion events. We have combin...

Full description

Saved in:
Bibliographic Details
Published in:Geophysical research letters 2009-06, Vol.36 (12), p.n/a
Main Authors: Hirdman, D., Aspmo, K., Burkhart, J. F., Eckhardt, S., Sodemann, H., Stohl, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3186-c99e4f97f14e575a476af1b129b3dc8293ad6afd1b56fcff438cedafe5eb06d93
cites cdi_FETCH-LOGICAL-c3186-c99e4f97f14e575a476af1b129b3dc8293ad6afd1b56fcff438cedafe5eb06d93
container_end_page n/a
container_issue 12
container_start_page
container_title Geophysical research letters
container_volume 36
creator Hirdman, D.
Aspmo, K.
Burkhart, J. F.
Eckhardt, S.
Sodemann, H.
Stohl, A.
description In the Arctic, atmospheric concentrations of gaseous elemental mercury (GEM) can decrease strongly in spring when mercury is deposited to the snow. Some studies suggest mercury can accumulate in the snow while others suggest rapid reemission after atmospheric mercury depletion events. We have combined measurements of GEM at the Arctic site Zeppelin (Ny Ålesund, Spitsbergen) with the output of the Lagrangian particle dispersion model FLEXPART, for a statistical analysis of GEM source and sink regions. We find that the Arctic is a strong net sink region for GEM in April and May, suggesting that mercury accumulates in the Arctic snow pack. For summer, we find the Arctic to be a GEM source, indicating reemission of previously deposited mercury when the snow and/or ice melts, or evasion from the ocean through sea ice leads and polynyas. Our results are corroborated by a related analysis of ozone source and sink regions.
doi_str_mv 10.1029/2009GL038345
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34537368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34537368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3186-c99e4f97f14e575a476af1b129b3dc8293ad6afd1b56fcff438cedafe5eb06d93</originalsourceid><addsrcrecordid>eNqFkUtrFUEQhQdR8Jq48wc0gq4c0--HuxDiJHiNRCKCm6ZvT7XpZB7X7hn1_nv7MiGIi7jqous7p6g6VfWC4LcEU3NEMTbNGjPNuHhUrYjhvNYYq8fVqnRKTZV8Wj3L-QZjzDAjqypeJTfk7ZgmNAbUQ_Jz2qE4oOka0HHyU_TITf2Yt9eQ4B06_RlbGDygMCbkUN6mOHyvp9gDGmBCOQ63yA0tynNfzJZGHufk4bB6ElyX4fnde1B9eX96dXJWrz815yfH69ozomXtjQEejAqEg1DCcSVdIBtCzYa1XlPDXFt-WrIRMvgQONMeWhdAwAbL1rCD6vXiu03jjxnyZPuYPXSdG2Ccsy23YYpJ_V-QYqm0NryAL_8Bb8pGQ1nCam4YE0btx75ZIJ_GnBMEW07Tu7SzBNt9OvbvdAr-6s7TZe-6UFLwMd9rKFFcayELRxfuV-xg96CnbT6vqTByL6oXUcwT_L4XuXRrpWJK2K8Xjb1svn28_ECFFewPOVqtUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>849335979</pqid></control><display><type>article</type><title>Transport of mercury in the Arctic atmosphere: Evidence for a spring-time net sink and summer-time source</title><source>Wiley-Blackwell AGU Digital Library</source><creator>Hirdman, D. ; Aspmo, K. ; Burkhart, J. F. ; Eckhardt, S. ; Sodemann, H. ; Stohl, A.</creator><creatorcontrib>Hirdman, D. ; Aspmo, K. ; Burkhart, J. F. ; Eckhardt, S. ; Sodemann, H. ; Stohl, A.</creatorcontrib><description>In the Arctic, atmospheric concentrations of gaseous elemental mercury (GEM) can decrease strongly in spring when mercury is deposited to the snow. Some studies suggest mercury can accumulate in the snow while others suggest rapid reemission after atmospheric mercury depletion events. We have combined measurements of GEM at the Arctic site Zeppelin (Ny Ålesund, Spitsbergen) with the output of the Lagrangian particle dispersion model FLEXPART, for a statistical analysis of GEM source and sink regions. We find that the Arctic is a strong net sink region for GEM in April and May, suggesting that mercury accumulates in the Arctic snow pack. For summer, we find the Arctic to be a GEM source, indicating reemission of previously deposited mercury when the snow and/or ice melts, or evasion from the ocean through sea ice leads and polynyas. Our results are corroborated by a related analysis of ozone source and sink regions.</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2009GL038345</identifier><identifier>CODEN: GPRLAJ</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Arctic ; Atmospheric boundary layer ; Atmospheric sciences ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Marine ; Mercury ; Meteorology ; Sea ice ; Snow accumulation ; Snowpack ; Spring ; Statistical analysis ; Summer ; transport ; Troposphere</subject><ispartof>Geophysical research letters, 2009-06, Vol.36 (12), p.n/a</ispartof><rights>Copyright 2009 by the American Geophysical Union.</rights><rights>2009 INIST-CNRS</rights><rights>Copyright 2009 by American Geophysical Union</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3186-c99e4f97f14e575a476af1b129b3dc8293ad6afd1b56fcff438cedafe5eb06d93</citedby><cites>FETCH-LOGICAL-c3186-c99e4f97f14e575a476af1b129b3dc8293ad6afd1b56fcff438cedafe5eb06d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2009GL038345$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2009GL038345$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,11513,27923,27924,46467,46891</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21748856$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Hirdman, D.</creatorcontrib><creatorcontrib>Aspmo, K.</creatorcontrib><creatorcontrib>Burkhart, J. F.</creatorcontrib><creatorcontrib>Eckhardt, S.</creatorcontrib><creatorcontrib>Sodemann, H.</creatorcontrib><creatorcontrib>Stohl, A.</creatorcontrib><title>Transport of mercury in the Arctic atmosphere: Evidence for a spring-time net sink and summer-time source</title><title>Geophysical research letters</title><addtitle>Geophys. Res. Lett</addtitle><description>In the Arctic, atmospheric concentrations of gaseous elemental mercury (GEM) can decrease strongly in spring when mercury is deposited to the snow. Some studies suggest mercury can accumulate in the snow while others suggest rapid reemission after atmospheric mercury depletion events. We have combined measurements of GEM at the Arctic site Zeppelin (Ny Ålesund, Spitsbergen) with the output of the Lagrangian particle dispersion model FLEXPART, for a statistical analysis of GEM source and sink regions. We find that the Arctic is a strong net sink region for GEM in April and May, suggesting that mercury accumulates in the Arctic snow pack. For summer, we find the Arctic to be a GEM source, indicating reemission of previously deposited mercury when the snow and/or ice melts, or evasion from the ocean through sea ice leads and polynyas. Our results are corroborated by a related analysis of ozone source and sink regions.</description><subject>Arctic</subject><subject>Atmospheric boundary layer</subject><subject>Atmospheric sciences</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Marine</subject><subject>Mercury</subject><subject>Meteorology</subject><subject>Sea ice</subject><subject>Snow accumulation</subject><subject>Snowpack</subject><subject>Spring</subject><subject>Statistical analysis</subject><subject>Summer</subject><subject>transport</subject><subject>Troposphere</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkUtrFUEQhQdR8Jq48wc0gq4c0--HuxDiJHiNRCKCm6ZvT7XpZB7X7hn1_nv7MiGIi7jqous7p6g6VfWC4LcEU3NEMTbNGjPNuHhUrYjhvNYYq8fVqnRKTZV8Wj3L-QZjzDAjqypeJTfk7ZgmNAbUQ_Jz2qE4oOka0HHyU_TITf2Yt9eQ4B06_RlbGDygMCbkUN6mOHyvp9gDGmBCOQ63yA0tynNfzJZGHufk4bB6ElyX4fnde1B9eX96dXJWrz815yfH69ozomXtjQEejAqEg1DCcSVdIBtCzYa1XlPDXFt-WrIRMvgQONMeWhdAwAbL1rCD6vXiu03jjxnyZPuYPXSdG2Ccsy23YYpJ_V-QYqm0NryAL_8Bb8pGQ1nCam4YE0btx75ZIJ_GnBMEW07Tu7SzBNt9OvbvdAr-6s7TZe-6UFLwMd9rKFFcayELRxfuV-xg96CnbT6vqTByL6oXUcwT_L4XuXRrpWJK2K8Xjb1svn28_ECFFewPOVqtUQ</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Hirdman, D.</creator><creator>Aspmo, K.</creator><creator>Burkhart, J. F.</creator><creator>Eckhardt, S.</creator><creator>Sodemann, H.</creator><creator>Stohl, A.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><general>John Wiley &amp; Sons, Inc</general><scope>BSCLL</scope><scope>24P</scope><scope>WIN</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7TV</scope><scope>C1K</scope><scope>7SM</scope></search><sort><creationdate>200906</creationdate><title>Transport of mercury in the Arctic atmosphere: Evidence for a spring-time net sink and summer-time source</title><author>Hirdman, D. ; Aspmo, K. ; Burkhart, J. F. ; Eckhardt, S. ; Sodemann, H. ; Stohl, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3186-c99e4f97f14e575a476af1b129b3dc8293ad6afd1b56fcff438cedafe5eb06d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Arctic</topic><topic>Atmospheric boundary layer</topic><topic>Atmospheric sciences</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Marine</topic><topic>Mercury</topic><topic>Meteorology</topic><topic>Sea ice</topic><topic>Snow accumulation</topic><topic>Snowpack</topic><topic>Spring</topic><topic>Statistical analysis</topic><topic>Summer</topic><topic>transport</topic><topic>Troposphere</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hirdman, D.</creatorcontrib><creatorcontrib>Aspmo, K.</creatorcontrib><creatorcontrib>Burkhart, J. F.</creatorcontrib><creatorcontrib>Eckhardt, S.</creatorcontrib><creatorcontrib>Sodemann, H.</creatorcontrib><creatorcontrib>Stohl, A.</creatorcontrib><collection>Istex</collection><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley Online Library Free Content</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Pollution Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Earthquake Engineering Abstracts</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hirdman, D.</au><au>Aspmo, K.</au><au>Burkhart, J. F.</au><au>Eckhardt, S.</au><au>Sodemann, H.</au><au>Stohl, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transport of mercury in the Arctic atmosphere: Evidence for a spring-time net sink and summer-time source</atitle><jtitle>Geophysical research letters</jtitle><addtitle>Geophys. Res. Lett</addtitle><date>2009-06</date><risdate>2009</risdate><volume>36</volume><issue>12</issue><epage>n/a</epage><issn>0094-8276</issn><eissn>1944-8007</eissn><coden>GPRLAJ</coden><abstract>In the Arctic, atmospheric concentrations of gaseous elemental mercury (GEM) can decrease strongly in spring when mercury is deposited to the snow. Some studies suggest mercury can accumulate in the snow while others suggest rapid reemission after atmospheric mercury depletion events. We have combined measurements of GEM at the Arctic site Zeppelin (Ny Ålesund, Spitsbergen) with the output of the Lagrangian particle dispersion model FLEXPART, for a statistical analysis of GEM source and sink regions. We find that the Arctic is a strong net sink region for GEM in April and May, suggesting that mercury accumulates in the Arctic snow pack. For summer, we find the Arctic to be a GEM source, indicating reemission of previously deposited mercury when the snow and/or ice melts, or evasion from the ocean through sea ice leads and polynyas. Our results are corroborated by a related analysis of ozone source and sink regions.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2009GL038345</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2009-06, Vol.36 (12), p.n/a
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_miscellaneous_34537368
source Wiley-Blackwell AGU Digital Library
subjects Arctic
Atmospheric boundary layer
Atmospheric sciences
Earth sciences
Earth, ocean, space
Exact sciences and technology
Marine
Mercury
Meteorology
Sea ice
Snow accumulation
Snowpack
Spring
Statistical analysis
Summer
transport
Troposphere
title Transport of mercury in the Arctic atmosphere: Evidence for a spring-time net sink and summer-time source
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A15%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transport%20of%20mercury%20in%20the%20Arctic%20atmosphere:%20Evidence%20for%20a%20spring-time%20net%20sink%20and%20summer-time%20source&rft.jtitle=Geophysical%20research%20letters&rft.au=Hirdman,%20D.&rft.date=2009-06&rft.volume=36&rft.issue=12&rft.epage=n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft.coden=GPRLAJ&rft_id=info:doi/10.1029/2009GL038345&rft_dat=%3Cproquest_cross%3E34537368%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3186-c99e4f97f14e575a476af1b129b3dc8293ad6afd1b56fcff438cedafe5eb06d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=849335979&rft_id=info:pmid/&rfr_iscdi=true