Loading…

Specifics of RBMK core cooling in beyond design basis accidents

The most dangerous beyond design basis accidents for RBMK reactors, leading to the worst consequences, are related to the loss of long-term heat removal from the core. Due to a specific design of RBMK, there are a few possibilities for heat removal from reactor core by non-regular means: removal of...

Full description

Saved in:
Bibliographic Details
Published in:Nuclear engineering and design 2008-08, Vol.238 (8), p.2005-2016
Main Authors: Kaliatka, A., Ušpuras, E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The most dangerous beyond design basis accidents for RBMK reactors, leading to the worst consequences, are related to the loss of long-term heat removal from the core. Due to a specific design of RBMK, there are a few possibilities for heat removal from reactor core by non-regular means: removal of heat from graphite stack by reactor gas circuit, removal of heat from reactor core using control rods cooling circuit, depressurisation of reactor cooling system, supply of water into cooling system from low pressure water sources, etc. This paper presents the analysis of such heat removal by employing RELAP5, RELAP5-3D and RELAP/SCDAPSIM codes. The analysis was performed for Ignalina nuclear power plant with RBMK-1500 reactor. The analysis of result shows that the restoration of water supply into control rod channels enables to remove 10–30 MW of the generated heat from the reactor core. This amount of removed heat is comparable with reactor decay heat in long-term period and allows to slowdown the core heat-up process. However, the injection of water to reactor cooling system is considered as main strategy, which should be considered in RBMK-1500 accident management procedure.
ISSN:0029-5493
1872-759X
DOI:10.1016/j.nucengdes.2007.10.029