Loading…

Extension of Oxley's predictive machining theory for Johnson and Cook flow stress model

This paper presents an extension of Oxley's predictive analytical model for forces, temperatures and stresses at primary (shear zone) and secondary (tool-chip interface zone) deformation zone for Johnson and Cook flow stress model. The effect of strain in addition to strain-rate and temperature...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials processing technology 2009-07, Vol.209 (12), p.5305-5312
Main Authors: Lalwani, D.I., Mehta, N.K., Jain, P.K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents an extension of Oxley's predictive analytical model for forces, temperatures and stresses at primary (shear zone) and secondary (tool-chip interface zone) deformation zone for Johnson and Cook flow stress model. The effect of strain in addition to strain-rate and temperature at tool–chip interface, which is ignored by many researchers, is considered in the present analysis. The extension is made inline with Oxley's predictive machining theory by introducing the term n eq for Johnson and Cook material flow stress model. The term n eq becomes strain hardening exponent ( n) for power law flow stress model used by Oxley and can be found for other material models too. Johnson and Cook flow stress model that considers the effect of strain, strain-rate, and temperature on material property is widely used nowadays in finite element method simulation and analytical modeling due to its simple form and easy to use. The extension of Oxley's theory is verified for orthogonal cutting test data from the available literature for 0.38% carbon steel [Oxley, P.L.B., 1989. The Mechanics of Machining: An Analytical Approach to Assessing Machinability. Ellis Horwood Ltd., England] and AISI 1045 steel [Ivester, R.W., Kennedy, M., Davies, M., Stevenson, R., Thiele, J., Furness, R., Athavale, S., 2000. Assessment of machining models: progress report. Machining Science and Technology 4, 511–538] and found in good agreement.
ISSN:0924-0136
DOI:10.1016/j.jmatprotec.2009.03.020