Loading…

Contraflow Transportation Network Reconfiguration for Evacuation Route Planning

Given a transportation network having source nodes with evacuees and destination nodes, we want to find a contraflow network configuration, i.e., ideal direction for each edge, to minimize evacuation time. Contraflow is considered a potential remedy to reduce congestion during evacuations in the con...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on knowledge and data engineering 2008-08, Vol.20 (8), p.1115-1129
Main Authors: Sangho Kim, Shekhar, S., Min, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c419t-d36fef58e567bed4f845629b84a299a58413d050dd7c1acb6b4f8b88512371593
cites cdi_FETCH-LOGICAL-c419t-d36fef58e567bed4f845629b84a299a58413d050dd7c1acb6b4f8b88512371593
container_end_page 1129
container_issue 8
container_start_page 1115
container_title IEEE transactions on knowledge and data engineering
container_volume 20
creator Sangho Kim
Shekhar, S.
Min, M.
description Given a transportation network having source nodes with evacuees and destination nodes, we want to find a contraflow network configuration, i.e., ideal direction for each edge, to minimize evacuation time. Contraflow is considered a potential remedy to reduce congestion during evacuations in the context of homeland security and natural disasters (e.g., hurricanes). This problem is computationally challenging because of the very large search space and the expensive calculation of evacuation time on a given network. To our knowledge, this paper presents the first macroscopic approaches for the solution of contraflow network reconfiguration incorporating road capacity constraints, multiple sources, congestion factor, and scalability. We formally define the contraflow problem based on graph theory and provide a framework of computational workload to classify our approaches. A greedy heuristic is designed to produce high quality solutions with significant performance. A bottleneck relief heuristic is developed to deal with large numbers of evacuees. We evaluate the proposed approaches both analytically and experimentally using real world datasets. Experimental results show that our contraflow approaches can reduce evacuation time by 40% or more.
doi_str_mv 10.1109/TKDE.2007.190722
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_34562801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4384487</ieee_id><sourcerecordid>875078253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-d36fef58e567bed4f845629b84a299a58413d050dd7c1acb6b4f8b88512371593</originalsourceid><addsrcrecordid>eNp9kTtPwzAUhSMEEqWwI7FEDDCl-PoR2yMq5SEqiqoyW07iVClpXOyEin-PoyAGBqb70HfuQyeKzgFNAJC8WT3fzSYYIT4BiTjGB9EIGBMJBgmHIUcUEkooP45OvN8ghAQXMIoWU9u0Tpe13ccrpxu_s67VbWWb-MW0e-ve46XJbVNW684N_dK6ePap824ol7ZrTfxa66apmvVpdFTq2puznziO3u5nq-ljMl88PE1v50lOQbZJQdLSlEwYlvLMFLQUlKVYZoJqLKVmggIpEENFwXPQeZZmAcmEYIAJBybJOLoe5u6c_eiMb9W28rmpwxnGdl4JzhAXmJFAXv1Lkn6zQBDAyz_gxnauCV8oCRjLMDINEBqg3FnvnSnVzlVb7b4UINUboXojVG-EGowIkotBUhljfnFKBKWCk28S1oQY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912298756</pqid></control><display><type>article</type><title>Contraflow Transportation Network Reconfiguration for Evacuation Route Planning</title><source>IEEE Xplore (Online service)</source><creator>Sangho Kim ; Shekhar, S. ; Min, M.</creator><creatorcontrib>Sangho Kim ; Shekhar, S. ; Min, M.</creatorcontrib><description>Given a transportation network having source nodes with evacuees and destination nodes, we want to find a contraflow network configuration, i.e., ideal direction for each edge, to minimize evacuation time. Contraflow is considered a potential remedy to reduce congestion during evacuations in the context of homeland security and natural disasters (e.g., hurricanes). This problem is computationally challenging because of the very large search space and the expensive calculation of evacuation time on a given network. To our knowledge, this paper presents the first macroscopic approaches for the solution of contraflow network reconfiguration incorporating road capacity constraints, multiple sources, congestion factor, and scalability. We formally define the contraflow problem based on graph theory and provide a framework of computational workload to classify our approaches. A greedy heuristic is designed to produce high quality solutions with significant performance. A bottleneck relief heuristic is developed to deal with large numbers of evacuees. We evaluate the proposed approaches both analytically and experimentally using real world datasets. Experimental results show that our contraflow approaches can reduce evacuation time by 40% or more.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2007.190722</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Capacity planning ; Computation ; Computer networks ; Congestion ; Contraflow ; Evacuation ; Evacuation Route Planning ; Evacuations &amp; rescues ; Graph theory ; Heuristic ; Homeland security ; Hurricanes ; Mathematical analysis ; Mathematical models ; Networks ; Optimization ; Roads ; Space exploration ; Studies ; Telecommunication traffic ; Terrorism ; Traffic control ; Transportation</subject><ispartof>IEEE transactions on knowledge and data engineering, 2008-08, Vol.20 (8), p.1115-1129</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-d36fef58e567bed4f845629b84a299a58413d050dd7c1acb6b4f8b88512371593</citedby><cites>FETCH-LOGICAL-c419t-d36fef58e567bed4f845629b84a299a58413d050dd7c1acb6b4f8b88512371593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4384487$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Sangho Kim</creatorcontrib><creatorcontrib>Shekhar, S.</creatorcontrib><creatorcontrib>Min, M.</creatorcontrib><title>Contraflow Transportation Network Reconfiguration for Evacuation Route Planning</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Given a transportation network having source nodes with evacuees and destination nodes, we want to find a contraflow network configuration, i.e., ideal direction for each edge, to minimize evacuation time. Contraflow is considered a potential remedy to reduce congestion during evacuations in the context of homeland security and natural disasters (e.g., hurricanes). This problem is computationally challenging because of the very large search space and the expensive calculation of evacuation time on a given network. To our knowledge, this paper presents the first macroscopic approaches for the solution of contraflow network reconfiguration incorporating road capacity constraints, multiple sources, congestion factor, and scalability. We formally define the contraflow problem based on graph theory and provide a framework of computational workload to classify our approaches. A greedy heuristic is designed to produce high quality solutions with significant performance. A bottleneck relief heuristic is developed to deal with large numbers of evacuees. We evaluate the proposed approaches both analytically and experimentally using real world datasets. Experimental results show that our contraflow approaches can reduce evacuation time by 40% or more.</description><subject>Algorithms</subject><subject>Capacity planning</subject><subject>Computation</subject><subject>Computer networks</subject><subject>Congestion</subject><subject>Contraflow</subject><subject>Evacuation</subject><subject>Evacuation Route Planning</subject><subject>Evacuations &amp; rescues</subject><subject>Graph theory</subject><subject>Heuristic</subject><subject>Homeland security</subject><subject>Hurricanes</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Networks</subject><subject>Optimization</subject><subject>Roads</subject><subject>Space exploration</subject><subject>Studies</subject><subject>Telecommunication traffic</subject><subject>Terrorism</subject><subject>Traffic control</subject><subject>Transportation</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kTtPwzAUhSMEEqWwI7FEDDCl-PoR2yMq5SEqiqoyW07iVClpXOyEin-PoyAGBqb70HfuQyeKzgFNAJC8WT3fzSYYIT4BiTjGB9EIGBMJBgmHIUcUEkooP45OvN8ghAQXMIoWU9u0Tpe13ccrpxu_s67VbWWb-MW0e-ve46XJbVNW684N_dK6ePap824ol7ZrTfxa66apmvVpdFTq2puznziO3u5nq-ljMl88PE1v50lOQbZJQdLSlEwYlvLMFLQUlKVYZoJqLKVmggIpEENFwXPQeZZmAcmEYIAJBybJOLoe5u6c_eiMb9W28rmpwxnGdl4JzhAXmJFAXv1Lkn6zQBDAyz_gxnauCV8oCRjLMDINEBqg3FnvnSnVzlVb7b4UINUboXojVG-EGowIkotBUhljfnFKBKWCk28S1oQY</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Sangho Kim</creator><creator>Shekhar, S.</creator><creator>Min, M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080801</creationdate><title>Contraflow Transportation Network Reconfiguration for Evacuation Route Planning</title><author>Sangho Kim ; Shekhar, S. ; Min, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-d36fef58e567bed4f845629b84a299a58413d050dd7c1acb6b4f8b88512371593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Capacity planning</topic><topic>Computation</topic><topic>Computer networks</topic><topic>Congestion</topic><topic>Contraflow</topic><topic>Evacuation</topic><topic>Evacuation Route Planning</topic><topic>Evacuations &amp; rescues</topic><topic>Graph theory</topic><topic>Heuristic</topic><topic>Homeland security</topic><topic>Hurricanes</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Networks</topic><topic>Optimization</topic><topic>Roads</topic><topic>Space exploration</topic><topic>Studies</topic><topic>Telecommunication traffic</topic><topic>Terrorism</topic><topic>Traffic control</topic><topic>Transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sangho Kim</creatorcontrib><creatorcontrib>Shekhar, S.</creatorcontrib><creatorcontrib>Min, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sangho Kim</au><au>Shekhar, S.</au><au>Min, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contraflow Transportation Network Reconfiguration for Evacuation Route Planning</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2008-08-01</date><risdate>2008</risdate><volume>20</volume><issue>8</issue><spage>1115</spage><epage>1129</epage><pages>1115-1129</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Given a transportation network having source nodes with evacuees and destination nodes, we want to find a contraflow network configuration, i.e., ideal direction for each edge, to minimize evacuation time. Contraflow is considered a potential remedy to reduce congestion during evacuations in the context of homeland security and natural disasters (e.g., hurricanes). This problem is computationally challenging because of the very large search space and the expensive calculation of evacuation time on a given network. To our knowledge, this paper presents the first macroscopic approaches for the solution of contraflow network reconfiguration incorporating road capacity constraints, multiple sources, congestion factor, and scalability. We formally define the contraflow problem based on graph theory and provide a framework of computational workload to classify our approaches. A greedy heuristic is designed to produce high quality solutions with significant performance. A bottleneck relief heuristic is developed to deal with large numbers of evacuees. We evaluate the proposed approaches both analytically and experimentally using real world datasets. Experimental results show that our contraflow approaches can reduce evacuation time by 40% or more.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2007.190722</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1041-4347
ispartof IEEE transactions on knowledge and data engineering, 2008-08, Vol.20 (8), p.1115-1129
issn 1041-4347
1558-2191
language eng
recordid cdi_proquest_miscellaneous_34562801
source IEEE Xplore (Online service)
subjects Algorithms
Capacity planning
Computation
Computer networks
Congestion
Contraflow
Evacuation
Evacuation Route Planning
Evacuations & rescues
Graph theory
Heuristic
Homeland security
Hurricanes
Mathematical analysis
Mathematical models
Networks
Optimization
Roads
Space exploration
Studies
Telecommunication traffic
Terrorism
Traffic control
Transportation
title Contraflow Transportation Network Reconfiguration for Evacuation Route Planning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A09%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contraflow%20Transportation%20Network%20Reconfiguration%20for%20Evacuation%20Route%20Planning&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Sangho%20Kim&rft.date=2008-08-01&rft.volume=20&rft.issue=8&rft.spage=1115&rft.epage=1129&rft.pages=1115-1129&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2007.190722&rft_dat=%3Cproquest_ieee_%3E875078253%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c419t-d36fef58e567bed4f845629b84a299a58413d050dd7c1acb6b4f8b88512371593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=912298756&rft_id=info:pmid/&rft_ieee_id=4384487&rfr_iscdi=true