Loading…
Contraflow Transportation Network Reconfiguration for Evacuation Route Planning
Given a transportation network having source nodes with evacuees and destination nodes, we want to find a contraflow network configuration, i.e., ideal direction for each edge, to minimize evacuation time. Contraflow is considered a potential remedy to reduce congestion during evacuations in the con...
Saved in:
Published in: | IEEE transactions on knowledge and data engineering 2008-08, Vol.20 (8), p.1115-1129 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c419t-d36fef58e567bed4f845629b84a299a58413d050dd7c1acb6b4f8b88512371593 |
---|---|
cites | cdi_FETCH-LOGICAL-c419t-d36fef58e567bed4f845629b84a299a58413d050dd7c1acb6b4f8b88512371593 |
container_end_page | 1129 |
container_issue | 8 |
container_start_page | 1115 |
container_title | IEEE transactions on knowledge and data engineering |
container_volume | 20 |
creator | Sangho Kim Shekhar, S. Min, M. |
description | Given a transportation network having source nodes with evacuees and destination nodes, we want to find a contraflow network configuration, i.e., ideal direction for each edge, to minimize evacuation time. Contraflow is considered a potential remedy to reduce congestion during evacuations in the context of homeland security and natural disasters (e.g., hurricanes). This problem is computationally challenging because of the very large search space and the expensive calculation of evacuation time on a given network. To our knowledge, this paper presents the first macroscopic approaches for the solution of contraflow network reconfiguration incorporating road capacity constraints, multiple sources, congestion factor, and scalability. We formally define the contraflow problem based on graph theory and provide a framework of computational workload to classify our approaches. A greedy heuristic is designed to produce high quality solutions with significant performance. A bottleneck relief heuristic is developed to deal with large numbers of evacuees. We evaluate the proposed approaches both analytically and experimentally using real world datasets. Experimental results show that our contraflow approaches can reduce evacuation time by 40% or more. |
doi_str_mv | 10.1109/TKDE.2007.190722 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_miscellaneous_34562801</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4384487</ieee_id><sourcerecordid>875078253</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-d36fef58e567bed4f845629b84a299a58413d050dd7c1acb6b4f8b88512371593</originalsourceid><addsrcrecordid>eNp9kTtPwzAUhSMEEqWwI7FEDDCl-PoR2yMq5SEqiqoyW07iVClpXOyEin-PoyAGBqb70HfuQyeKzgFNAJC8WT3fzSYYIT4BiTjGB9EIGBMJBgmHIUcUEkooP45OvN8ghAQXMIoWU9u0Tpe13ccrpxu_s67VbWWb-MW0e-ve46XJbVNW684N_dK6ePap824ol7ZrTfxa66apmvVpdFTq2puznziO3u5nq-ljMl88PE1v50lOQbZJQdLSlEwYlvLMFLQUlKVYZoJqLKVmggIpEENFwXPQeZZmAcmEYIAJBybJOLoe5u6c_eiMb9W28rmpwxnGdl4JzhAXmJFAXv1Lkn6zQBDAyz_gxnauCV8oCRjLMDINEBqg3FnvnSnVzlVb7b4UINUboXojVG-EGowIkotBUhljfnFKBKWCk28S1oQY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>912298756</pqid></control><display><type>article</type><title>Contraflow Transportation Network Reconfiguration for Evacuation Route Planning</title><source>IEEE Xplore (Online service)</source><creator>Sangho Kim ; Shekhar, S. ; Min, M.</creator><creatorcontrib>Sangho Kim ; Shekhar, S. ; Min, M.</creatorcontrib><description>Given a transportation network having source nodes with evacuees and destination nodes, we want to find a contraflow network configuration, i.e., ideal direction for each edge, to minimize evacuation time. Contraflow is considered a potential remedy to reduce congestion during evacuations in the context of homeland security and natural disasters (e.g., hurricanes). This problem is computationally challenging because of the very large search space and the expensive calculation of evacuation time on a given network. To our knowledge, this paper presents the first macroscopic approaches for the solution of contraflow network reconfiguration incorporating road capacity constraints, multiple sources, congestion factor, and scalability. We formally define the contraflow problem based on graph theory and provide a framework of computational workload to classify our approaches. A greedy heuristic is designed to produce high quality solutions with significant performance. A bottleneck relief heuristic is developed to deal with large numbers of evacuees. We evaluate the proposed approaches both analytically and experimentally using real world datasets. Experimental results show that our contraflow approaches can reduce evacuation time by 40% or more.</description><identifier>ISSN: 1041-4347</identifier><identifier>EISSN: 1558-2191</identifier><identifier>DOI: 10.1109/TKDE.2007.190722</identifier><identifier>CODEN: ITKEEH</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Capacity planning ; Computation ; Computer networks ; Congestion ; Contraflow ; Evacuation ; Evacuation Route Planning ; Evacuations & rescues ; Graph theory ; Heuristic ; Homeland security ; Hurricanes ; Mathematical analysis ; Mathematical models ; Networks ; Optimization ; Roads ; Space exploration ; Studies ; Telecommunication traffic ; Terrorism ; Traffic control ; Transportation</subject><ispartof>IEEE transactions on knowledge and data engineering, 2008-08, Vol.20 (8), p.1115-1129</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-d36fef58e567bed4f845629b84a299a58413d050dd7c1acb6b4f8b88512371593</citedby><cites>FETCH-LOGICAL-c419t-d36fef58e567bed4f845629b84a299a58413d050dd7c1acb6b4f8b88512371593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4384487$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Sangho Kim</creatorcontrib><creatorcontrib>Shekhar, S.</creatorcontrib><creatorcontrib>Min, M.</creatorcontrib><title>Contraflow Transportation Network Reconfiguration for Evacuation Route Planning</title><title>IEEE transactions on knowledge and data engineering</title><addtitle>TKDE</addtitle><description>Given a transportation network having source nodes with evacuees and destination nodes, we want to find a contraflow network configuration, i.e., ideal direction for each edge, to minimize evacuation time. Contraflow is considered a potential remedy to reduce congestion during evacuations in the context of homeland security and natural disasters (e.g., hurricanes). This problem is computationally challenging because of the very large search space and the expensive calculation of evacuation time on a given network. To our knowledge, this paper presents the first macroscopic approaches for the solution of contraflow network reconfiguration incorporating road capacity constraints, multiple sources, congestion factor, and scalability. We formally define the contraflow problem based on graph theory and provide a framework of computational workload to classify our approaches. A greedy heuristic is designed to produce high quality solutions with significant performance. A bottleneck relief heuristic is developed to deal with large numbers of evacuees. We evaluate the proposed approaches both analytically and experimentally using real world datasets. Experimental results show that our contraflow approaches can reduce evacuation time by 40% or more.</description><subject>Algorithms</subject><subject>Capacity planning</subject><subject>Computation</subject><subject>Computer networks</subject><subject>Congestion</subject><subject>Contraflow</subject><subject>Evacuation</subject><subject>Evacuation Route Planning</subject><subject>Evacuations & rescues</subject><subject>Graph theory</subject><subject>Heuristic</subject><subject>Homeland security</subject><subject>Hurricanes</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Networks</subject><subject>Optimization</subject><subject>Roads</subject><subject>Space exploration</subject><subject>Studies</subject><subject>Telecommunication traffic</subject><subject>Terrorism</subject><subject>Traffic control</subject><subject>Transportation</subject><issn>1041-4347</issn><issn>1558-2191</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kTtPwzAUhSMEEqWwI7FEDDCl-PoR2yMq5SEqiqoyW07iVClpXOyEin-PoyAGBqb70HfuQyeKzgFNAJC8WT3fzSYYIT4BiTjGB9EIGBMJBgmHIUcUEkooP45OvN8ghAQXMIoWU9u0Tpe13ccrpxu_s67VbWWb-MW0e-ve46XJbVNW684N_dK6ePap824ol7ZrTfxa66apmvVpdFTq2puznziO3u5nq-ljMl88PE1v50lOQbZJQdLSlEwYlvLMFLQUlKVYZoJqLKVmggIpEENFwXPQeZZmAcmEYIAJBybJOLoe5u6c_eiMb9W28rmpwxnGdl4JzhAXmJFAXv1Lkn6zQBDAyz_gxnauCV8oCRjLMDINEBqg3FnvnSnVzlVb7b4UINUboXojVG-EGowIkotBUhljfnFKBKWCk28S1oQY</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Sangho Kim</creator><creator>Shekhar, S.</creator><creator>Min, M.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080801</creationdate><title>Contraflow Transportation Network Reconfiguration for Evacuation Route Planning</title><author>Sangho Kim ; Shekhar, S. ; Min, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-d36fef58e567bed4f845629b84a299a58413d050dd7c1acb6b4f8b88512371593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Capacity planning</topic><topic>Computation</topic><topic>Computer networks</topic><topic>Congestion</topic><topic>Contraflow</topic><topic>Evacuation</topic><topic>Evacuation Route Planning</topic><topic>Evacuations & rescues</topic><topic>Graph theory</topic><topic>Heuristic</topic><topic>Homeland security</topic><topic>Hurricanes</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Networks</topic><topic>Optimization</topic><topic>Roads</topic><topic>Space exploration</topic><topic>Studies</topic><topic>Telecommunication traffic</topic><topic>Terrorism</topic><topic>Traffic control</topic><topic>Transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sangho Kim</creatorcontrib><creatorcontrib>Shekhar, S.</creatorcontrib><creatorcontrib>Min, M.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on knowledge and data engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sangho Kim</au><au>Shekhar, S.</au><au>Min, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contraflow Transportation Network Reconfiguration for Evacuation Route Planning</atitle><jtitle>IEEE transactions on knowledge and data engineering</jtitle><stitle>TKDE</stitle><date>2008-08-01</date><risdate>2008</risdate><volume>20</volume><issue>8</issue><spage>1115</spage><epage>1129</epage><pages>1115-1129</pages><issn>1041-4347</issn><eissn>1558-2191</eissn><coden>ITKEEH</coden><abstract>Given a transportation network having source nodes with evacuees and destination nodes, we want to find a contraflow network configuration, i.e., ideal direction for each edge, to minimize evacuation time. Contraflow is considered a potential remedy to reduce congestion during evacuations in the context of homeland security and natural disasters (e.g., hurricanes). This problem is computationally challenging because of the very large search space and the expensive calculation of evacuation time on a given network. To our knowledge, this paper presents the first macroscopic approaches for the solution of contraflow network reconfiguration incorporating road capacity constraints, multiple sources, congestion factor, and scalability. We formally define the contraflow problem based on graph theory and provide a framework of computational workload to classify our approaches. A greedy heuristic is designed to produce high quality solutions with significant performance. A bottleneck relief heuristic is developed to deal with large numbers of evacuees. We evaluate the proposed approaches both analytically and experimentally using real world datasets. Experimental results show that our contraflow approaches can reduce evacuation time by 40% or more.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TKDE.2007.190722</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1041-4347 |
ispartof | IEEE transactions on knowledge and data engineering, 2008-08, Vol.20 (8), p.1115-1129 |
issn | 1041-4347 1558-2191 |
language | eng |
recordid | cdi_proquest_miscellaneous_34562801 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Capacity planning Computation Computer networks Congestion Contraflow Evacuation Evacuation Route Planning Evacuations & rescues Graph theory Heuristic Homeland security Hurricanes Mathematical analysis Mathematical models Networks Optimization Roads Space exploration Studies Telecommunication traffic Terrorism Traffic control Transportation |
title | Contraflow Transportation Network Reconfiguration for Evacuation Route Planning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A09%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contraflow%20Transportation%20Network%20Reconfiguration%20for%20Evacuation%20Route%20Planning&rft.jtitle=IEEE%20transactions%20on%20knowledge%20and%20data%20engineering&rft.au=Sangho%20Kim&rft.date=2008-08-01&rft.volume=20&rft.issue=8&rft.spage=1115&rft.epage=1129&rft.pages=1115-1129&rft.issn=1041-4347&rft.eissn=1558-2191&rft.coden=ITKEEH&rft_id=info:doi/10.1109/TKDE.2007.190722&rft_dat=%3Cproquest_ieee_%3E875078253%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c419t-d36fef58e567bed4f845629b84a299a58413d050dd7c1acb6b4f8b88512371593%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=912298756&rft_id=info:pmid/&rft_ieee_id=4384487&rfr_iscdi=true |