Loading…

Doping-induced-effects on conduction mechanisms in incommensurate ammonium zinc chloride crystals

The dc conductivity (σ) along the polar b‐axis of ammonium zinc chloride (AZC) crystals in its four high‐temperature phases has been measured as a function of temperature. Doping with Mn2+ in different concentrations changed strongly both values of σ at all temperatures and the dependence of ln σdc...

Full description

Saved in:
Bibliographic Details
Published in:Crystal research and technology (1979) 2007-06, Vol.42 (6), p.569-577
Main Authors: Gaffar, M. A., Abu El-Fadl, A., Bin Anooz, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The dc conductivity (σ) along the polar b‐axis of ammonium zinc chloride (AZC) crystals in its four high‐temperature phases has been measured as a function of temperature. Doping with Mn2+ in different concentrations changed strongly both values of σ at all temperatures and the dependence of ln σdc on 1/T in the phase transition regions. The activation energy of conduction was calculated from the linear portions of this dependence in each phase. The results were discussed in the light of the decomposition of (NH4)2 in the high‐temperature normal phase, the discommensuaration (DC) formation/annihilation in the incommensurate phase and domain wall motion and stripples nucleation in the commensurate‐ and antiferroelectric‐phases. Pinning of DC's in the crystal lattice and/or by the structural defects and the possibility of dislocation formation was also discussed. The bulk‐ and the electrode‐limited conduction mechanisms were also considered. The current density‐voltage gradient relationship according to the usual Richardson‐Schottky (R‐S) equation shows disagreement between extracted parameters and experimentally measured ones. A modified equation was used to solve this difficulty which, in addition, facilitated the calculation of the electronic mobility (μ), the barrier height (φ) at the electrode‐dielectric interface and the R‐S constant (βRS). The effect of Mn2+‐content on values of μ, φ and βRS in different phases of AZC was also considered. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)
ISSN:0232-1300
1521-4079
DOI:10.1002/crat.200610865