Loading…

Finite-temperature effects on the superfluid Bose–Einstein condensation of confined ultracold atoms in three-dimensional optical lattices

We discuss the finite-temperature phase diagram in the three-dimensional Bose-Hubbard (BH) model in the strong correlation regime, relevant for Bose-Einstein condensates in optical lattices, by employing a quantum rotor approach. In systems with strong on-site repulsive interactions, the rotor U(1)...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. B, Atomic, molecular, and optical physics Atomic, molecular, and optical physics, 2009-05, Vol.42 (9), p.095302
Main Authors: Polak, T P, Kopeć, T K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c392t-4bb7e4122c0804af09f80be89373cedc6f448209862875902bbf94a78cc3b5763
cites cdi_FETCH-LOGICAL-c392t-4bb7e4122c0804af09f80be89373cedc6f448209862875902bbf94a78cc3b5763
container_end_page
container_issue 9
container_start_page 095302
container_title Journal of physics. B, Atomic, molecular, and optical physics
container_volume 42
creator Polak, T P
Kopeć, T K
description We discuss the finite-temperature phase diagram in the three-dimensional Bose-Hubbard (BH) model in the strong correlation regime, relevant for Bose-Einstein condensates in optical lattices, by employing a quantum rotor approach. In systems with strong on-site repulsive interactions, the rotor U(1) phase variable dual to the local boson density emerges as an important collective field. After establishing the connection between the rotor construction and the on-site interaction in the BH model a robust effective action formalism is developed which allows us to study the superfluid phase transition in various temperature-interaction regimes.
doi_str_mv 10.1088/0953-4075/42/9/095302
format article
fullrecord <record><control><sourceid>proquest_pasca</sourceid><recordid>TN_cdi_proquest_miscellaneous_34585734</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34585734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-4bb7e4122c0804af09f80be89373cedc6f448209862875902bbf94a78cc3b5763</originalsourceid><addsrcrecordid>eNp9kL2O1TAQhS0EEpeFR0ByAxXh-jexS1jtwkor0UBtOc5YGCV2sJ2Cjp6SN9wnweGubsOKajya75zxHIReUvKWEqWOREveCTLIo2BH_bcl7BE6UN7TrhdSPkaHM_MUPSvlGyGUKkYO6Nd1iKFCV2FZIdu6ZcDgPbhacIq4fgVctjbx8xYm_D4VuPv5-yrEUiFE7FKcIBZbQ2OT33sfIkx4m2u2Ls0TtjUtBYfdKgN0U1iaoOF2xmmtwbU629oeUJ6jJ97OBV7c1wv05frq8-XH7vbTh5vLd7ed45rVTozjAIIy5ogiwnqivSIjKM0H7mByvRei3aZVz9QgNWHj6LWwg3KOj3Lo-QV6ffJdc_q-QalmCcXBPNsIaSuGC6nkwEUD5Ql0OZWSwZs1h8XmH4YSs0dv9ljNHqsRzGhzir7pXt0vsKUd6LONLpSzmFEhOaWkcW9OXEjrefqgpVkn33DyL_7_n_wBpPejng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34585734</pqid></control><display><type>article</type><title>Finite-temperature effects on the superfluid Bose–Einstein condensation of confined ultracold atoms in three-dimensional optical lattices</title><source>Institute of Physics</source><creator>Polak, T P ; Kopeć, T K</creator><creatorcontrib>Polak, T P ; Kopeć, T K</creatorcontrib><description>We discuss the finite-temperature phase diagram in the three-dimensional Bose-Hubbard (BH) model in the strong correlation regime, relevant for Bose-Einstein condensates in optical lattices, by employing a quantum rotor approach. In systems with strong on-site repulsive interactions, the rotor U(1) phase variable dual to the local boson density emerges as an important collective field. After establishing the connection between the rotor construction and the on-site interaction in the BH model a robust effective action formalism is developed which allows us to study the superfluid phase transition in various temperature-interaction regimes.</description><identifier>ISSN: 0953-4075</identifier><identifier>EISSN: 1361-6455</identifier><identifier>DOI: 10.1088/0953-4075/42/9/095302</identifier><identifier>CODEN: JPAPEH</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Atom, molecule and ion trapping and colling methods ; Atomic and molecular physics ; Classical and quantum physics: mechanics and fields ; Exact sciences and technology ; Matter waves ; Mechanical control of atoms, molecules and ions ; Physics</subject><ispartof>Journal of physics. B, Atomic, molecular, and optical physics, 2009-05, Vol.42 (9), p.095302</ispartof><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-4bb7e4122c0804af09f80be89373cedc6f448209862875902bbf94a78cc3b5763</citedby><cites>FETCH-LOGICAL-c392t-4bb7e4122c0804af09f80be89373cedc6f448209862875902bbf94a78cc3b5763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21453110$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Polak, T P</creatorcontrib><creatorcontrib>Kopeć, T K</creatorcontrib><title>Finite-temperature effects on the superfluid Bose–Einstein condensation of confined ultracold atoms in three-dimensional optical lattices</title><title>Journal of physics. B, Atomic, molecular, and optical physics</title><description>We discuss the finite-temperature phase diagram in the three-dimensional Bose-Hubbard (BH) model in the strong correlation regime, relevant for Bose-Einstein condensates in optical lattices, by employing a quantum rotor approach. In systems with strong on-site repulsive interactions, the rotor U(1) phase variable dual to the local boson density emerges as an important collective field. After establishing the connection between the rotor construction and the on-site interaction in the BH model a robust effective action formalism is developed which allows us to study the superfluid phase transition in various temperature-interaction regimes.</description><subject>Atom, molecule and ion trapping and colling methods</subject><subject>Atomic and molecular physics</subject><subject>Classical and quantum physics: mechanics and fields</subject><subject>Exact sciences and technology</subject><subject>Matter waves</subject><subject>Mechanical control of atoms, molecules and ions</subject><subject>Physics</subject><issn>0953-4075</issn><issn>1361-6455</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kL2O1TAQhS0EEpeFR0ByAxXh-jexS1jtwkor0UBtOc5YGCV2sJ2Cjp6SN9wnweGubsOKajya75zxHIReUvKWEqWOREveCTLIo2BH_bcl7BE6UN7TrhdSPkaHM_MUPSvlGyGUKkYO6Nd1iKFCV2FZIdu6ZcDgPbhacIq4fgVctjbx8xYm_D4VuPv5-yrEUiFE7FKcIBZbQ2OT33sfIkx4m2u2Ls0TtjUtBYfdKgN0U1iaoOF2xmmtwbU629oeUJ6jJ97OBV7c1wv05frq8-XH7vbTh5vLd7ed45rVTozjAIIy5ogiwnqivSIjKM0H7mByvRei3aZVz9QgNWHj6LWwg3KOj3Lo-QV6ffJdc_q-QalmCcXBPNsIaSuGC6nkwEUD5Ql0OZWSwZs1h8XmH4YSs0dv9ljNHqsRzGhzir7pXt0vsKUd6LONLpSzmFEhOaWkcW9OXEjrefqgpVkn33DyL_7_n_wBpPejng</recordid><startdate>20090514</startdate><enddate>20090514</enddate><creator>Polak, T P</creator><creator>Kopeć, T K</creator><general>IOP Publishing</general><general>Institute of Physics</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20090514</creationdate><title>Finite-temperature effects on the superfluid Bose–Einstein condensation of confined ultracold atoms in three-dimensional optical lattices</title><author>Polak, T P ; Kopeć, T K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-4bb7e4122c0804af09f80be89373cedc6f448209862875902bbf94a78cc3b5763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Atom, molecule and ion trapping and colling methods</topic><topic>Atomic and molecular physics</topic><topic>Classical and quantum physics: mechanics and fields</topic><topic>Exact sciences and technology</topic><topic>Matter waves</topic><topic>Mechanical control of atoms, molecules and ions</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Polak, T P</creatorcontrib><creatorcontrib>Kopeć, T K</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of physics. B, Atomic, molecular, and optical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Polak, T P</au><au>Kopeć, T K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-temperature effects on the superfluid Bose–Einstein condensation of confined ultracold atoms in three-dimensional optical lattices</atitle><jtitle>Journal of physics. B, Atomic, molecular, and optical physics</jtitle><date>2009-05-14</date><risdate>2009</risdate><volume>42</volume><issue>9</issue><spage>095302</spage><pages>095302-</pages><issn>0953-4075</issn><eissn>1361-6455</eissn><coden>JPAPEH</coden><abstract>We discuss the finite-temperature phase diagram in the three-dimensional Bose-Hubbard (BH) model in the strong correlation regime, relevant for Bose-Einstein condensates in optical lattices, by employing a quantum rotor approach. In systems with strong on-site repulsive interactions, the rotor U(1) phase variable dual to the local boson density emerges as an important collective field. After establishing the connection between the rotor construction and the on-site interaction in the BH model a robust effective action formalism is developed which allows us to study the superfluid phase transition in various temperature-interaction regimes.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/0953-4075/42/9/095302</doi></addata></record>
fulltext fulltext
identifier ISSN: 0953-4075
ispartof Journal of physics. B, Atomic, molecular, and optical physics, 2009-05, Vol.42 (9), p.095302
issn 0953-4075
1361-6455
language eng
recordid cdi_proquest_miscellaneous_34585734
source Institute of Physics
subjects Atom, molecule and ion trapping and colling methods
Atomic and molecular physics
Classical and quantum physics: mechanics and fields
Exact sciences and technology
Matter waves
Mechanical control of atoms, molecules and ions
Physics
title Finite-temperature effects on the superfluid Bose–Einstein condensation of confined ultracold atoms in three-dimensional optical lattices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A48%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pasca&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-temperature%20effects%20on%20the%20superfluid%20Bose%E2%80%93Einstein%20condensation%20of%20confined%20ultracold%20atoms%20in%20three-dimensional%20optical%20lattices&rft.jtitle=Journal%20of%20physics.%20B,%20Atomic,%20molecular,%20and%20optical%20physics&rft.au=Polak,%20T%20P&rft.date=2009-05-14&rft.volume=42&rft.issue=9&rft.spage=095302&rft.pages=095302-&rft.issn=0953-4075&rft.eissn=1361-6455&rft.coden=JPAPEH&rft_id=info:doi/10.1088/0953-4075/42/9/095302&rft_dat=%3Cproquest_pasca%3E34585734%3C/proquest_pasca%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-4bb7e4122c0804af09f80be89373cedc6f448209862875902bbf94a78cc3b5763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=34585734&rft_id=info:pmid/&rfr_iscdi=true