Loading…

Lengthening the polymer solidification time to improve the performance of polymer/ZnO nanorod hybrid solar cells

Lengthening the polymer solidification time in the inverted configuration of polymer/ZnO nanorod hybrid solar cells is studied as a way to improve device performance. As the polymer solidification time is lengthened by lowering the spin-coating rate of the photoactive layer, the photoactive layer be...

Full description

Saved in:
Bibliographic Details
Published in:Solar energy materials and solar cells 2009-09, Vol.93 (9), p.1608-1612
Main Authors: Chou, Chen-Yu, Huang, Jing-Shun, Wu, Chung-Hao, Lee, Chun-Yu, Lin, Ching-Fuh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c470t-d889b0ae7d40fcaa98ed562639059fa3b0d43920ace04396b0ef7ba040a02b483
cites cdi_FETCH-LOGICAL-c470t-d889b0ae7d40fcaa98ed562639059fa3b0d43920ace04396b0ef7ba040a02b483
container_end_page 1612
container_issue 9
container_start_page 1608
container_title Solar energy materials and solar cells
container_volume 93
creator Chou, Chen-Yu
Huang, Jing-Shun
Wu, Chung-Hao
Lee, Chun-Yu
Lin, Ching-Fuh
description Lengthening the polymer solidification time in the inverted configuration of polymer/ZnO nanorod hybrid solar cells is studied as a way to improve device performance. As the polymer solidification time is lengthened by lowering the spin-coating rate of the photoactive layer, the photoactive layer becomes thickened, and the polymer chains have enough time to self-organize and effectively infiltrate into ZnO nanorod spacing. While the thickness of the photoactive layer is increased to 400 nm accompanying self-organized polymer, the power conversion efficiency of the device is improved to 3.58% with an enhanced fill factor of 58%. The 400 nm film is composed of the highly ordered polymer and the ZnO nanorod arrays, resulting in light harvesting without decreasing the possibility for charge transport.
doi_str_mv 10.1016/j.solmat.2009.04.016
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34606565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927024809001640</els_id><sourcerecordid>34606565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c470t-d889b0ae7d40fcaa98ed562639059fa3b0d43920ace04396b0ef7ba040a02b483</originalsourceid><addsrcrecordid>eNp9kEFr3DAQhUVpodu0_6AHXZqbnbGttaVLIISkDSzkkl56EWNplGixpY3kBPbfV4uTHnsaMXzv6c1j7HsDdQNNf7Gvc5xmXOoWQNUg6rL8wDaNHFTVdUp-ZBtQ7VBBK-Rn9iXnPQC0fSc27LCj8Lg8UfDhkZfJD3E6zpR4cfTWO29w8THwxc_El8j9fEjxlVaUkotpxmCIR_euvPgT7nnAEFO0_Ok4Jm9PZpi4oWnKX9knh1Omb2_zjP2-vXm4_lXt7n_eXV_tKiMGWCorpRoBabACnEFUkuy2L5kVbJXDbgQrOtUCGoLy6EcgN4wIAhDaUcjujJ2vviXv8wvlRc8-nxJgoPiSdSd66Lf9toBiBU2KOSdy-pD8jOmoG9CnevVer_XqU70ahC7LIvvx5o_Z4ORSqcHnf9q2GdpByqZwlytH5dhXT0ln46lUZn0is2gb_f8_-gsJQ5UH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34606565</pqid></control><display><type>article</type><title>Lengthening the polymer solidification time to improve the performance of polymer/ZnO nanorod hybrid solar cells</title><source>ScienceDirect Journals</source><creator>Chou, Chen-Yu ; Huang, Jing-Shun ; Wu, Chung-Hao ; Lee, Chun-Yu ; Lin, Ching-Fuh</creator><creatorcontrib>Chou, Chen-Yu ; Huang, Jing-Shun ; Wu, Chung-Hao ; Lee, Chun-Yu ; Lin, Ching-Fuh</creatorcontrib><description>Lengthening the polymer solidification time in the inverted configuration of polymer/ZnO nanorod hybrid solar cells is studied as a way to improve device performance. As the polymer solidification time is lengthened by lowering the spin-coating rate of the photoactive layer, the photoactive layer becomes thickened, and the polymer chains have enough time to self-organize and effectively infiltrate into ZnO nanorod spacing. While the thickness of the photoactive layer is increased to 400 nm accompanying self-organized polymer, the power conversion efficiency of the device is improved to 3.58% with an enhanced fill factor of 58%. The 400 nm film is composed of the highly ordered polymer and the ZnO nanorod arrays, resulting in light harvesting without decreasing the possibility for charge transport.</description><identifier>ISSN: 0927-0248</identifier><identifier>EISSN: 1879-3398</identifier><identifier>DOI: 10.1016/j.solmat.2009.04.016</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>400 nm active layer ; Applied sciences ; Energy ; Exact sciences and technology ; Hybrid solar cells ; Natural energy ; Photovoltaic conversion ; Polymer ; Slow drying ; Solar cells. Photoelectrochemical cells ; Solar energy ; ZnO nanorod</subject><ispartof>Solar energy materials and solar cells, 2009-09, Vol.93 (9), p.1608-1612</ispartof><rights>2009 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c470t-d889b0ae7d40fcaa98ed562639059fa3b0d43920ace04396b0ef7ba040a02b483</citedby><cites>FETCH-LOGICAL-c470t-d889b0ae7d40fcaa98ed562639059fa3b0d43920ace04396b0ef7ba040a02b483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21727881$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chou, Chen-Yu</creatorcontrib><creatorcontrib>Huang, Jing-Shun</creatorcontrib><creatorcontrib>Wu, Chung-Hao</creatorcontrib><creatorcontrib>Lee, Chun-Yu</creatorcontrib><creatorcontrib>Lin, Ching-Fuh</creatorcontrib><title>Lengthening the polymer solidification time to improve the performance of polymer/ZnO nanorod hybrid solar cells</title><title>Solar energy materials and solar cells</title><description>Lengthening the polymer solidification time in the inverted configuration of polymer/ZnO nanorod hybrid solar cells is studied as a way to improve device performance. As the polymer solidification time is lengthened by lowering the spin-coating rate of the photoactive layer, the photoactive layer becomes thickened, and the polymer chains have enough time to self-organize and effectively infiltrate into ZnO nanorod spacing. While the thickness of the photoactive layer is increased to 400 nm accompanying self-organized polymer, the power conversion efficiency of the device is improved to 3.58% with an enhanced fill factor of 58%. The 400 nm film is composed of the highly ordered polymer and the ZnO nanorod arrays, resulting in light harvesting without decreasing the possibility for charge transport.</description><subject>400 nm active layer</subject><subject>Applied sciences</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Hybrid solar cells</subject><subject>Natural energy</subject><subject>Photovoltaic conversion</subject><subject>Polymer</subject><subject>Slow drying</subject><subject>Solar cells. Photoelectrochemical cells</subject><subject>Solar energy</subject><subject>ZnO nanorod</subject><issn>0927-0248</issn><issn>1879-3398</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNp9kEFr3DAQhUVpodu0_6AHXZqbnbGttaVLIISkDSzkkl56EWNplGixpY3kBPbfV4uTHnsaMXzv6c1j7HsDdQNNf7Gvc5xmXOoWQNUg6rL8wDaNHFTVdUp-ZBtQ7VBBK-Rn9iXnPQC0fSc27LCj8Lg8UfDhkZfJD3E6zpR4cfTWO29w8THwxc_El8j9fEjxlVaUkotpxmCIR_euvPgT7nnAEFO0_Ok4Jm9PZpi4oWnKX9knh1Omb2_zjP2-vXm4_lXt7n_eXV_tKiMGWCorpRoBabACnEFUkuy2L5kVbJXDbgQrOtUCGoLy6EcgN4wIAhDaUcjujJ2vviXv8wvlRc8-nxJgoPiSdSd66Lf9toBiBU2KOSdy-pD8jOmoG9CnevVer_XqU70ahC7LIvvx5o_Z4ORSqcHnf9q2GdpByqZwlytH5dhXT0ln46lUZn0is2gb_f8_-gsJQ5UH</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Chou, Chen-Yu</creator><creator>Huang, Jing-Shun</creator><creator>Wu, Chung-Hao</creator><creator>Lee, Chun-Yu</creator><creator>Lin, Ching-Fuh</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>20090901</creationdate><title>Lengthening the polymer solidification time to improve the performance of polymer/ZnO nanorod hybrid solar cells</title><author>Chou, Chen-Yu ; Huang, Jing-Shun ; Wu, Chung-Hao ; Lee, Chun-Yu ; Lin, Ching-Fuh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c470t-d889b0ae7d40fcaa98ed562639059fa3b0d43920ace04396b0ef7ba040a02b483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>400 nm active layer</topic><topic>Applied sciences</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Hybrid solar cells</topic><topic>Natural energy</topic><topic>Photovoltaic conversion</topic><topic>Polymer</topic><topic>Slow drying</topic><topic>Solar cells. Photoelectrochemical cells</topic><topic>Solar energy</topic><topic>ZnO nanorod</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chou, Chen-Yu</creatorcontrib><creatorcontrib>Huang, Jing-Shun</creatorcontrib><creatorcontrib>Wu, Chung-Hao</creatorcontrib><creatorcontrib>Lee, Chun-Yu</creatorcontrib><creatorcontrib>Lin, Ching-Fuh</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Solar energy materials and solar cells</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chou, Chen-Yu</au><au>Huang, Jing-Shun</au><au>Wu, Chung-Hao</au><au>Lee, Chun-Yu</au><au>Lin, Ching-Fuh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lengthening the polymer solidification time to improve the performance of polymer/ZnO nanorod hybrid solar cells</atitle><jtitle>Solar energy materials and solar cells</jtitle><date>2009-09-01</date><risdate>2009</risdate><volume>93</volume><issue>9</issue><spage>1608</spage><epage>1612</epage><pages>1608-1612</pages><issn>0927-0248</issn><eissn>1879-3398</eissn><abstract>Lengthening the polymer solidification time in the inverted configuration of polymer/ZnO nanorod hybrid solar cells is studied as a way to improve device performance. As the polymer solidification time is lengthened by lowering the spin-coating rate of the photoactive layer, the photoactive layer becomes thickened, and the polymer chains have enough time to self-organize and effectively infiltrate into ZnO nanorod spacing. While the thickness of the photoactive layer is increased to 400 nm accompanying self-organized polymer, the power conversion efficiency of the device is improved to 3.58% with an enhanced fill factor of 58%. The 400 nm film is composed of the highly ordered polymer and the ZnO nanorod arrays, resulting in light harvesting without decreasing the possibility for charge transport.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.solmat.2009.04.016</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-0248
ispartof Solar energy materials and solar cells, 2009-09, Vol.93 (9), p.1608-1612
issn 0927-0248
1879-3398
language eng
recordid cdi_proquest_miscellaneous_34606565
source ScienceDirect Journals
subjects 400 nm active layer
Applied sciences
Energy
Exact sciences and technology
Hybrid solar cells
Natural energy
Photovoltaic conversion
Polymer
Slow drying
Solar cells. Photoelectrochemical cells
Solar energy
ZnO nanorod
title Lengthening the polymer solidification time to improve the performance of polymer/ZnO nanorod hybrid solar cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A58%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lengthening%20the%20polymer%20solidification%20time%20to%20improve%20the%20performance%20of%20polymer/ZnO%20nanorod%20hybrid%20solar%20cells&rft.jtitle=Solar%20energy%20materials%20and%20solar%20cells&rft.au=Chou,%20Chen-Yu&rft.date=2009-09-01&rft.volume=93&rft.issue=9&rft.spage=1608&rft.epage=1612&rft.pages=1608-1612&rft.issn=0927-0248&rft.eissn=1879-3398&rft_id=info:doi/10.1016/j.solmat.2009.04.016&rft_dat=%3Cproquest_cross%3E34606565%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c470t-d889b0ae7d40fcaa98ed562639059fa3b0d43920ace04396b0ef7ba040a02b483%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=34606565&rft_id=info:pmid/&rfr_iscdi=true