Loading…

Modeling anisotropic surface reflectance with example-based microfacet synthesis

We present a new technique for the visual modeling of spatiallyvarying anisotropic reflectance using data captured from a single view. Reflectance is represented using a microfacet-based BRDF which tabulates the facets' normal distribution (NDF) as a function of surface location. Data from a si...

Full description

Saved in:
Bibliographic Details
Published in:ACM transactions on graphics 2008-08, Vol.27 (3), p.1-9
Main Authors: Wang, Jiaping, Zhao, Shuang, Tong, Xin, Snyder, John, Guo, Baining
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a new technique for the visual modeling of spatiallyvarying anisotropic reflectance using data captured from a single view. Reflectance is represented using a microfacet-based BRDF which tabulates the facets' normal distribution (NDF) as a function of surface location. Data from a single view provides a 2D slice of the 4D BRDF at each surface point from which we fit a partial NDF. The fitted NDF is partial because the single view direction coupled with the set of light directions covers only a portion of the "half-angle" hemisphere. We complete the NDF at each point by applying a novel variant of texture synthesis using similar, overlapping partial NDFs from other points. Our similarity measure allows azimuthal rotation of partial NDFs, under the assumption that reflectance is spatially redundant but the local frame may be arbitrarily oriented. Our system includes a simple acquisition device that collects images over a 2D set of light directions by scanning a linear array of LEDs over a flat sample. Results demonstrate that our approach preserves spatial and directional BRDF details and generates a visually compelling match to measured materials.
ISSN:0730-0301
1557-7368
DOI:10.1145/1360612.1360640