Loading…
Online nonpreemptive scheduling of equal-length jobs on two identical machines
We consider the nonpreemptive scheduling of two identical machines for jobs with equal processing times yet arbitrary release dates and deadlines. Our objective is to maximize the number of jobs completed by their deadlines. Using standard nomenclature, this problem is denoted as P 2 | p j = p , r j...
Saved in:
Published in: | ACM transactions on algorithms 2008-11, Vol.5 (1), p.1-18 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c272t-f575b0e71fc4ac3c5d30383a824017992b359a59bd68f2bf4c0a460243aab8f13 |
---|---|
cites | cdi_FETCH-LOGICAL-c272t-f575b0e71fc4ac3c5d30383a824017992b359a59bd68f2bf4c0a460243aab8f13 |
container_end_page | 18 |
container_issue | 1 |
container_start_page | 1 |
container_title | ACM transactions on algorithms |
container_volume | 5 |
creator | Goldwasser, Michael H. Pedigo, Mark |
description | We consider the nonpreemptive scheduling of two identical machines for jobs with equal processing times yet arbitrary release dates and deadlines. Our objective is to maximize the number of jobs completed by their deadlines. Using standard nomenclature, this problem is denoted as
P
2 |
p
j
=
p
,
r
j
| Σ
Ū
j
. The problem is known to be polynomially solvable in an offline setting.
In an online variant of the problem, a job's existence and parameters are revealed to the scheduler only upon that job's release date. We present an online deterministic algorithm for the problem and prove that it is 3/2-competitive. A simple lower bound shows that this is the optimal deterministic competitiveness. |
doi_str_mv | 10.1145/1435375.1435377 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34638500</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>34638500</sourcerecordid><originalsourceid>FETCH-LOGICAL-c272t-f575b0e71fc4ac3c5d30383a824017992b359a59bd68f2bf4c0a460243aab8f13</originalsourceid><addsrcrecordid>eNo9kD1PwzAYhC0EEqUws3piS2v7teNkRBVfUkUXmCPHed2mcuw0TkD8e4paMT0n3emkO0LuOVtwLtWSS1Cg1eJEfUFmXMkyywHg8l8LdU1uUtozBiVAMSPvm-DbgDTE0A-IXT-2X0iT3WEzHY0tjY7iYTI-8xi2447uY51oDHT8jrRtMIytNZ52xu6ONemWXDnjE96dOSefz08fq9dsvXl5Wz2uMyu0GDOntKoZau6sNBasaoBBAaYQknFdlqIGVRpV1k1eOFE7aZmRORMSjKkLx2FOHk69_RAPE6ax6tpk0XsTME6pAplDoY4r52R5CtohpjSgq_qh7czwU3FW_f1WnX87U8MvcA9gPQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34638500</pqid></control><display><type>article</type><title>Online nonpreemptive scheduling of equal-length jobs on two identical machines</title><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Goldwasser, Michael H. ; Pedigo, Mark</creator><creatorcontrib>Goldwasser, Michael H. ; Pedigo, Mark</creatorcontrib><description>We consider the nonpreemptive scheduling of two identical machines for jobs with equal processing times yet arbitrary release dates and deadlines. Our objective is to maximize the number of jobs completed by their deadlines. Using standard nomenclature, this problem is denoted as
P
2 |
p
j
=
p
,
r
j
| Σ
Ū
j
. The problem is known to be polynomially solvable in an offline setting.
In an online variant of the problem, a job's existence and parameters are revealed to the scheduler only upon that job's release date. We present an online deterministic algorithm for the problem and prove that it is 3/2-competitive. A simple lower bound shows that this is the optimal deterministic competitiveness.</description><identifier>ISSN: 1549-6325</identifier><identifier>EISSN: 1549-6333</identifier><identifier>DOI: 10.1145/1435375.1435377</identifier><language>eng</language><ispartof>ACM transactions on algorithms, 2008-11, Vol.5 (1), p.1-18</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c272t-f575b0e71fc4ac3c5d30383a824017992b359a59bd68f2bf4c0a460243aab8f13</citedby><cites>FETCH-LOGICAL-c272t-f575b0e71fc4ac3c5d30383a824017992b359a59bd68f2bf4c0a460243aab8f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Goldwasser, Michael H.</creatorcontrib><creatorcontrib>Pedigo, Mark</creatorcontrib><title>Online nonpreemptive scheduling of equal-length jobs on two identical machines</title><title>ACM transactions on algorithms</title><description>We consider the nonpreemptive scheduling of two identical machines for jobs with equal processing times yet arbitrary release dates and deadlines. Our objective is to maximize the number of jobs completed by their deadlines. Using standard nomenclature, this problem is denoted as
P
2 |
p
j
=
p
,
r
j
| Σ
Ū
j
. The problem is known to be polynomially solvable in an offline setting.
In an online variant of the problem, a job's existence and parameters are revealed to the scheduler only upon that job's release date. We present an online deterministic algorithm for the problem and prove that it is 3/2-competitive. A simple lower bound shows that this is the optimal deterministic competitiveness.</description><issn>1549-6325</issn><issn>1549-6333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAYhC0EEqUws3piS2v7teNkRBVfUkUXmCPHed2mcuw0TkD8e4paMT0n3emkO0LuOVtwLtWSS1Cg1eJEfUFmXMkyywHg8l8LdU1uUtozBiVAMSPvm-DbgDTE0A-IXT-2X0iT3WEzHY0tjY7iYTI-8xi2447uY51oDHT8jrRtMIytNZ52xu6ONemWXDnjE96dOSefz08fq9dsvXl5Wz2uMyu0GDOntKoZau6sNBasaoBBAaYQknFdlqIGVRpV1k1eOFE7aZmRORMSjKkLx2FOHk69_RAPE6ax6tpk0XsTME6pAplDoY4r52R5CtohpjSgq_qh7czwU3FW_f1WnX87U8MvcA9gPQ</recordid><startdate>200811</startdate><enddate>200811</enddate><creator>Goldwasser, Michael H.</creator><creator>Pedigo, Mark</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200811</creationdate><title>Online nonpreemptive scheduling of equal-length jobs on two identical machines</title><author>Goldwasser, Michael H. ; Pedigo, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c272t-f575b0e71fc4ac3c5d30383a824017992b359a59bd68f2bf4c0a460243aab8f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goldwasser, Michael H.</creatorcontrib><creatorcontrib>Pedigo, Mark</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>ACM transactions on algorithms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goldwasser, Michael H.</au><au>Pedigo, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Online nonpreemptive scheduling of equal-length jobs on two identical machines</atitle><jtitle>ACM transactions on algorithms</jtitle><date>2008-11</date><risdate>2008</risdate><volume>5</volume><issue>1</issue><spage>1</spage><epage>18</epage><pages>1-18</pages><issn>1549-6325</issn><eissn>1549-6333</eissn><abstract>We consider the nonpreemptive scheduling of two identical machines for jobs with equal processing times yet arbitrary release dates and deadlines. Our objective is to maximize the number of jobs completed by their deadlines. Using standard nomenclature, this problem is denoted as
P
2 |
p
j
=
p
,
r
j
| Σ
Ū
j
. The problem is known to be polynomially solvable in an offline setting.
In an online variant of the problem, a job's existence and parameters are revealed to the scheduler only upon that job's release date. We present an online deterministic algorithm for the problem and prove that it is 3/2-competitive. A simple lower bound shows that this is the optimal deterministic competitiveness.</abstract><doi>10.1145/1435375.1435377</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1549-6325 |
ispartof | ACM transactions on algorithms, 2008-11, Vol.5 (1), p.1-18 |
issn | 1549-6325 1549-6333 |
language | eng |
recordid | cdi_proquest_miscellaneous_34638500 |
source | Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list) |
title | Online nonpreemptive scheduling of equal-length jobs on two identical machines |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A19%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Online%20nonpreemptive%20scheduling%20of%20equal-length%20jobs%20on%20two%20identical%20machines&rft.jtitle=ACM%20transactions%20on%20algorithms&rft.au=Goldwasser,%20Michael%20H.&rft.date=2008-11&rft.volume=5&rft.issue=1&rft.spage=1&rft.epage=18&rft.pages=1-18&rft.issn=1549-6325&rft.eissn=1549-6333&rft_id=info:doi/10.1145/1435375.1435377&rft_dat=%3Cproquest_cross%3E34638500%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c272t-f575b0e71fc4ac3c5d30383a824017992b359a59bd68f2bf4c0a460243aab8f13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=34638500&rft_id=info:pmid/&rfr_iscdi=true |