Loading…
Synergistic anti-tumor activity of paclitaxel-incorporated conjugated linoleic acid-coupled poloxamer thermosensitive hydrogel in vitro and in vivo
Abstract Local delivery of anti-tumor drugs provides a high local concentration and decreases the incidence of side effects commonly observed with systemic therapy. Hydrogel systems are commonly used as a local drug delivery system. In this study, we prepared a novel thermosensitive conjugated linol...
Saved in:
Published in: | Biomaterials 2009-09, Vol.30 (27), p.4777-4785 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Local delivery of anti-tumor drugs provides a high local concentration and decreases the incidence of side effects commonly observed with systemic therapy. Hydrogel systems are commonly used as a local drug delivery system. In this study, we prepared a novel thermosensitive conjugated linoleic acid (CLA)-coupled poloxamer hydrogel for local delivery of paclitaxel (PTX) to gain the benefits of the pro-drug activity of the CLA-coupled poloxamer and enhanced PTX solubility due to the micellar property of the CLA-coupled poloxamer. To evaluate the anti-tumor activity of the PTX-incorporated CLA-coupled poloxamer hydrogel in vivo , formulations were injected subcutaneously into tumor-bearing mice. Cell cycle and apoptosis markers were examined to determine the mechanism of the anti-tumor activity of PTX. The PTX-incorporated CLA-coupled poloxamer thermosensitive hydrogel showed excellent anti-tumor activity in vivo inducing stronger cell cycle arrest and apoptosis in tumor tissue than the PTX-incorporated poloxamer hydrogel. These results were attributed to the synergistic effect of the anti-tumor property of PTX with released CLA from the CLA-coupled poloxamer as the pro-drug and the enhanced solubility of PTX resulting from the micellar property of the CLA-coupled poloxamer. The CLA-coupled poloxamer designed in this study has great potential as an effective injectable carrier of PTX. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/j.biomaterials.2009.05.051 |