Loading…
The effect of silica and natural organic matter on the Fe(II)-catalysed transformation and reactivity of Fe(III) minerals
The Fe(II)-catalysed transformation of synthetic schwertmannite, ferrihydrite, jarosite and lepidocrocite to more stable, crystalline Fe(III) oxyhydroxides is prevented by high, natural concentrations of Si and natural organic matter (NOM). Adsorption isotherms demonstrate that Si adsorbs to the iro...
Saved in:
Published in: | Geochimica et cosmochimica acta 2009-08, Vol.73 (15), p.4409-4422 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Fe(II)-catalysed transformation of synthetic schwertmannite, ferrihydrite, jarosite and lepidocrocite to more stable, crystalline Fe(III) oxyhydroxides is prevented by high, natural concentrations of Si and natural organic matter (NOM). Adsorption isotherms demonstrate that Si adsorbs to the iron minerals investigated and that increasing amounts of adsorbed Si results in a decrease in isotope exchange between aqueous Fe(II) and the Fe(III) mineral. This suggests that the adsorption of Si inhibits the direct adsorption of Fe(II) onto the mineral surface, providing an explanation for the inhibitory effect of Si on the Fe(II)-catalysed transformation of Fe(III) minerals. During the synthesis of lepidocrocite and ferrihydrite, the presence of equimolar concentrations of Si and Fe resulted in the formation of 2-line ferrihydrite containing co-precipitated Si in both cases. Isotope exchange experiments conducted with this freeze-dried Si co-precipitated ferrihydrite species (Si-ferrihydrite) demonstrated that the rate and extent of isotope exchange between aqueous Fe(II) and solid
55Fe(III) was very similar to that of 2-line ferrihydrite formed in the absence of Si and which had not been allowed to dry. In contrast to un-dried ferrihydrite formed in the absence of Si, Si-ferrihydrite did not transform into a more crystalline Fe(III) mineral phase over the 7-day period of investigation. Reductive dissolution studies using ascorbic acid demonstrated that both dried Si-ferrihydrite and un-dried 2-line ferrihydrite were very reactive, suggesting these species may be major contributors to the rapid release of dissolved iron following flooding and the onset of conditions conducive to reductive dissolution in acid sulphate soil environments. |
---|---|
ISSN: | 0016-7037 1872-9533 |
DOI: | 10.1016/j.gca.2009.04.025 |