Loading…

Three-dimensional study of Ni aluminides in an AlSi12 alloy by means of light optical and synchrotron microtomography

The three-dimensional (3D) microstructure of an AlSi12Ni alloy in as-cast and in solution-treated conditions is characterized by light optical and synchrotron tomography. Eutectic Al–Si alloys containing 1 wt.% Ni in as-cast condition present networks of connected Si lamellae as well as complex 3D s...

Full description

Saved in:
Bibliographic Details
Published in:Acta materialia 2009-08, Vol.57 (14), p.4125-4132
Main Authors: Asghar, Z., Requena, G., Degischer, H.P., Cloetens, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The three-dimensional (3D) microstructure of an AlSi12Ni alloy in as-cast and in solution-treated conditions is characterized by light optical and synchrotron tomography. Eutectic Al–Si alloys containing 1 wt.% Ni in as-cast condition present networks of connected Si lamellae as well as complex 3D shapes of Ni-containing aluminides. The eutectic Si networks disintegrate during solution treatment in the binary Al–Si alloy while they remain connected in the Al–Si–Ni alloy. The contiguity between eutectic Si and Ni-containing aluminides is maintained, when the alloy is solution treated at 540 °C for 24 h. The sphericity of the aluminides is only slightly increased by the solution treatment. The reinforcing role of eutectic Si together with the Ni-containing aluminides is governed by a stable interconnectivity and contiguity of these rigid phases accumulating ∼20 vol.%. The 3D data obtained by synchrotron tomography quantify connectivity, shape and volume fraction of eutectic Si and aluminides, whereas their contiguity is verified by light optical sectioning tomography.
ISSN:1359-6454
1873-2453
DOI:10.1016/j.actamat.2009.05.010