Loading…

Gas–solid interaction force from direct numerical simulation (DNS) of binary systems with extreme diameter ratios

Fluid–particle systems as commonly encountered in chemical, metallurgical and petroleum industries are mostly polydisperse in nature. However, the relations used to describe fluid–particle interactions are originally derived from monodisperse systems, with ad hoc modifications to account for polydis...

Full description

Saved in:
Bibliographic Details
Published in:Particuology 2009-08, Vol.7 (4), p.233-237
Main Authors: Sarkar, S., Kriebitzsch, S.H.L., van der Hoef, M.A., Kuipers, J.A.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Fluid–particle systems as commonly encountered in chemical, metallurgical and petroleum industries are mostly polydisperse in nature. However, the relations used to describe fluid–particle interactions are originally derived from monodisperse systems, with ad hoc modifications to account for polydispersity. In previous work it was shown that for bidisperse systems with moderate diameter ratios of 1:2 to 1:4, this approach leads to discrepancies, and a correction factor is needed. In this work we demonstrate that this correction factor also holds for more extreme diameter ratios of 1:5, 1:7 and 1:10, although the force on the large particles is slightly overestimated when using the correction factor. The main origin of the correction is that the void surrounding the large particles becomes less in case of a bidisperse mixture, as compared to a monodisperse system with the same volume fraction. We further investigated this discrepancy by calculating the volume per particle by means of Voronoi tessellation.
ISSN:1674-2001
1672-2515
2210-4291
DOI:10.1016/j.partic.2009.02.002