Loading…

Glacial geomorphology of the Pleistocene Lake Fagnano ice lobe, Tierra del Fuego, southern South America

A regional geomorphological study is presented of the southern and eastern coast of Lake Fagnano, one of the most extensive glacial areas of Tierra del Fuego Island, at the southernmost tip of South America. A palaeoglacial reconstruction is made, based on the location of erosional and depositional...

Full description

Saved in:
Bibliographic Details
Published in:Geomorphology (Amsterdam, Netherlands) Netherlands), 2009-11, Vol.112 (1), p.67-81
Main Authors: Coronato, A., Seppälä, M., Ponce, J.F., Rabassa, J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A regional geomorphological study is presented of the southern and eastern coast of Lake Fagnano, one of the most extensive glacial areas of Tierra del Fuego Island, at the southernmost tip of South America. A palaeoglacial reconstruction is made, based on the location of erosional and depositional glacial landforms. The outlet glacier flowing eastwards from the Darwin Cordillera (Fuegian Andes, Chile) had more than 50 tributary glaciers. An alpine-type landscape, including arêtes, cirques, truncated spurs and hanging valleys developed in the western region of the present lake, whereas a piedmont-type landscape including lateral moraines, glaciofluvial and glaciolacustrine terraces and an ice-disintegration landscape developed in the eastern region. The glacier spread over the low ranges and lowlands through three different lobes, and was drained by four main outwash basins, directly into the Atlantic Ocean. The ice-covered area is estimated at 4000 km 2; the maximum length of the main lobe at 132 km, and the general slope at 8°. Four terminal positions of the glacier were recognized and related to the Inútil Bay and Beagle Channel glacial areas, located to the north and south, respectively. 14C dates from basal peats show that most of the area, especially the easternmost part and the southern coast, were free of ice by 12,300 years B.P. Fossil peat contained in the lower basal till deposits yield 14C dates of 31,000–48,200 years B.P., indicating that a glacial advance occurred in the area prior to the Last Glacial Maximum (ca. 25,000–23,000 cal. years B.P.).
ISSN:0169-555X
1872-695X
DOI:10.1016/j.geomorph.2009.05.005