Loading…

Image analysis and statistical modelling for measurement and quality assessment of ornamental horticulture crops in glasshouses

Image analysis for ornamental crops is discussed with examples from the bedding plant industry. Feed-forward artificial neural networks are used to segment top and side view images of three contrasting species of bedding plants. The segmented images provide objective measurements of leaf and flower...

Full description

Saved in:
Bibliographic Details
Published in:Biosystems engineering 2009-10, Vol.104 (2), p.161-168
Main Authors: Parsons, N.R., Edmondson, R.N., Song, Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c465t-beb70b736df7244e9e94daf1b08472b3215a20906960245c23525817f4fe1a933
cites cdi_FETCH-LOGICAL-c465t-beb70b736df7244e9e94daf1b08472b3215a20906960245c23525817f4fe1a933
container_end_page 168
container_issue 2
container_start_page 161
container_title Biosystems engineering
container_volume 104
creator Parsons, N.R.
Edmondson, R.N.
Song, Y.
description Image analysis for ornamental crops is discussed with examples from the bedding plant industry. Feed-forward artificial neural networks are used to segment top and side view images of three contrasting species of bedding plants. The segmented images provide objective measurements of leaf and flower cover, colour, uniformity and leaf canopy height. On each imaging occasion, each pack was scored for quality by an assessor panel and it is shown that image analysis can explain 88.5%, 81.7% and 70.4% of the panel quality scores for the three species, respectively. Stereoscopy for crop height and uniformity is outlined briefly. The methods discussed here could be used for crop grading at marketing or for monitoring and assessment of growing crops within a glasshouse during all stages of production.
doi_str_mv 10.1016/j.biosystemseng.2009.06.015
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34759445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1537511009001950</els_id><sourcerecordid>34759445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-beb70b736df7244e9e94daf1b08472b3215a20906960245c23525817f4fe1a933</originalsourceid><addsrcrecordid>eNqNkEFr3DAQhU1poWna31BBaW_rSrJkr-mphLQNBHpocxZje-Rosa2NRi7sKX-9s9kQyC0nPcT3Zt68ovikZKmkqr_uyi5EOlDGmXAZSy1lW8q6lMq-Ks6UrZqNVbp9_aSVfFu8I9pJJhpTnxX3VzOMKGCB6UCBWAyCMuRAOfQwiTkOOE1hGYWPScwItCaccckP5N0KU8gHAURI9PAdvYhpgaNm-21MPGedMrtEn-KeRFjEOLHhNq5sel-88TARfnh8z4ubH5d_L35trn__vLr4fr3pTW3zpsOukV1T1YNvtDHYYmsG8KqTW9PortLKgpatrNtaamN7XVltt6rxxqOCtqrOiy-nufsU71ak7OZAPZ8GC3IQV5nGtsZYBr-dQE5LlNC7fQozpINT0h1Ldzv3rHR3LN3J2nGl7P78uAaI6_MJlj7Q0witOZxVNXMfT5yH6GBMzNz80VJVvGBbSdkwcXkikFv5FzA56gMuPQ4hYZ_dEMOLEv0HMmSsjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34759445</pqid></control><display><type>article</type><title>Image analysis and statistical modelling for measurement and quality assessment of ornamental horticulture crops in glasshouses</title><source>ScienceDirect Freedom Collection</source><creator>Parsons, N.R. ; Edmondson, R.N. ; Song, Y.</creator><creatorcontrib>Parsons, N.R. ; Edmondson, R.N. ; Song, Y.</creatorcontrib><description>Image analysis for ornamental crops is discussed with examples from the bedding plant industry. Feed-forward artificial neural networks are used to segment top and side view images of three contrasting species of bedding plants. The segmented images provide objective measurements of leaf and flower cover, colour, uniformity and leaf canopy height. On each imaging occasion, each pack was scored for quality by an assessor panel and it is shown that image analysis can explain 88.5%, 81.7% and 70.4% of the panel quality scores for the three species, respectively. Stereoscopy for crop height and uniformity is outlined briefly. The methods discussed here could be used for crop grading at marketing or for monitoring and assessment of growing crops within a glasshouse during all stages of production.</description><identifier>ISSN: 1537-5110</identifier><identifier>EISSN: 1537-5129</identifier><identifier>DOI: 10.1016/j.biosystemseng.2009.06.015</identifier><identifier>CODEN: BEINBJ</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Agricultural machinery and engineering ; Agronomy. Soil science and plant productions ; bedding plants ; Biological and medical sciences ; crop quality ; digital images ; Fundamental and applied biological sciences. Psychology ; Generalities. Biometrics, experimentation. Remote sensing ; greenhouse production ; greenhouses ; image analysis ; measurement ; neural networks ; ornamental plants ; plant morphology ; product grading ; quality control ; statistical models</subject><ispartof>Biosystems engineering, 2009-10, Vol.104 (2), p.161-168</ispartof><rights>2009 IAgrE</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-beb70b736df7244e9e94daf1b08472b3215a20906960245c23525817f4fe1a933</citedby><cites>FETCH-LOGICAL-c465t-beb70b736df7244e9e94daf1b08472b3215a20906960245c23525817f4fe1a933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22245516$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Parsons, N.R.</creatorcontrib><creatorcontrib>Edmondson, R.N.</creatorcontrib><creatorcontrib>Song, Y.</creatorcontrib><title>Image analysis and statistical modelling for measurement and quality assessment of ornamental horticulture crops in glasshouses</title><title>Biosystems engineering</title><description>Image analysis for ornamental crops is discussed with examples from the bedding plant industry. Feed-forward artificial neural networks are used to segment top and side view images of three contrasting species of bedding plants. The segmented images provide objective measurements of leaf and flower cover, colour, uniformity and leaf canopy height. On each imaging occasion, each pack was scored for quality by an assessor panel and it is shown that image analysis can explain 88.5%, 81.7% and 70.4% of the panel quality scores for the three species, respectively. Stereoscopy for crop height and uniformity is outlined briefly. The methods discussed here could be used for crop grading at marketing or for monitoring and assessment of growing crops within a glasshouse during all stages of production.</description><subject>Agricultural machinery and engineering</subject><subject>Agronomy. Soil science and plant productions</subject><subject>bedding plants</subject><subject>Biological and medical sciences</subject><subject>crop quality</subject><subject>digital images</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Generalities. Biometrics, experimentation. Remote sensing</subject><subject>greenhouse production</subject><subject>greenhouses</subject><subject>image analysis</subject><subject>measurement</subject><subject>neural networks</subject><subject>ornamental plants</subject><subject>plant morphology</subject><subject>product grading</subject><subject>quality control</subject><subject>statistical models</subject><issn>1537-5110</issn><issn>1537-5129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkEFr3DAQhU1poWna31BBaW_rSrJkr-mphLQNBHpocxZje-Rosa2NRi7sKX-9s9kQyC0nPcT3Zt68ovikZKmkqr_uyi5EOlDGmXAZSy1lW8q6lMq-Ks6UrZqNVbp9_aSVfFu8I9pJJhpTnxX3VzOMKGCB6UCBWAyCMuRAOfQwiTkOOE1hGYWPScwItCaccckP5N0KU8gHAURI9PAdvYhpgaNm-21MPGedMrtEn-KeRFjEOLHhNq5sel-88TARfnh8z4ubH5d_L35trn__vLr4fr3pTW3zpsOukV1T1YNvtDHYYmsG8KqTW9PortLKgpatrNtaamN7XVltt6rxxqOCtqrOiy-nufsU71ak7OZAPZ8GC3IQV5nGtsZYBr-dQE5LlNC7fQozpINT0h1Ldzv3rHR3LN3J2nGl7P78uAaI6_MJlj7Q0witOZxVNXMfT5yH6GBMzNz80VJVvGBbSdkwcXkikFv5FzA56gMuPQ4hYZ_dEMOLEv0HMmSsjw</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Parsons, N.R.</creator><creator>Edmondson, R.N.</creator><creator>Song, Y.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20091001</creationdate><title>Image analysis and statistical modelling for measurement and quality assessment of ornamental horticulture crops in glasshouses</title><author>Parsons, N.R. ; Edmondson, R.N. ; Song, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-beb70b736df7244e9e94daf1b08472b3215a20906960245c23525817f4fe1a933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Agricultural machinery and engineering</topic><topic>Agronomy. Soil science and plant productions</topic><topic>bedding plants</topic><topic>Biological and medical sciences</topic><topic>crop quality</topic><topic>digital images</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Generalities. Biometrics, experimentation. Remote sensing</topic><topic>greenhouse production</topic><topic>greenhouses</topic><topic>image analysis</topic><topic>measurement</topic><topic>neural networks</topic><topic>ornamental plants</topic><topic>plant morphology</topic><topic>product grading</topic><topic>quality control</topic><topic>statistical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parsons, N.R.</creatorcontrib><creatorcontrib>Edmondson, R.N.</creatorcontrib><creatorcontrib>Song, Y.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Biosystems engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parsons, N.R.</au><au>Edmondson, R.N.</au><au>Song, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image analysis and statistical modelling for measurement and quality assessment of ornamental horticulture crops in glasshouses</atitle><jtitle>Biosystems engineering</jtitle><date>2009-10-01</date><risdate>2009</risdate><volume>104</volume><issue>2</issue><spage>161</spage><epage>168</epage><pages>161-168</pages><issn>1537-5110</issn><eissn>1537-5129</eissn><coden>BEINBJ</coden><abstract>Image analysis for ornamental crops is discussed with examples from the bedding plant industry. Feed-forward artificial neural networks are used to segment top and side view images of three contrasting species of bedding plants. The segmented images provide objective measurements of leaf and flower cover, colour, uniformity and leaf canopy height. On each imaging occasion, each pack was scored for quality by an assessor panel and it is shown that image analysis can explain 88.5%, 81.7% and 70.4% of the panel quality scores for the three species, respectively. Stereoscopy for crop height and uniformity is outlined briefly. The methods discussed here could be used for crop grading at marketing or for monitoring and assessment of growing crops within a glasshouse during all stages of production.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.biosystemseng.2009.06.015</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1537-5110
ispartof Biosystems engineering, 2009-10, Vol.104 (2), p.161-168
issn 1537-5110
1537-5129
language eng
recordid cdi_proquest_miscellaneous_34759445
source ScienceDirect Freedom Collection
subjects Agricultural machinery and engineering
Agronomy. Soil science and plant productions
bedding plants
Biological and medical sciences
crop quality
digital images
Fundamental and applied biological sciences. Psychology
Generalities. Biometrics, experimentation. Remote sensing
greenhouse production
greenhouses
image analysis
measurement
neural networks
ornamental plants
plant morphology
product grading
quality control
statistical models
title Image analysis and statistical modelling for measurement and quality assessment of ornamental horticulture crops in glasshouses
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A32%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20analysis%20and%20statistical%20modelling%20for%20measurement%20and%20quality%20assessment%20of%20ornamental%20horticulture%20crops%20in%20glasshouses&rft.jtitle=Biosystems%20engineering&rft.au=Parsons,%20N.R.&rft.date=2009-10-01&rft.volume=104&rft.issue=2&rft.spage=161&rft.epage=168&rft.pages=161-168&rft.issn=1537-5110&rft.eissn=1537-5129&rft.coden=BEINBJ&rft_id=info:doi/10.1016/j.biosystemseng.2009.06.015&rft_dat=%3Cproquest_cross%3E34759445%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-beb70b736df7244e9e94daf1b08472b3215a20906960245c23525817f4fe1a933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=34759445&rft_id=info:pmid/&rfr_iscdi=true