Loading…
Image analysis and statistical modelling for measurement and quality assessment of ornamental horticulture crops in glasshouses
Image analysis for ornamental crops is discussed with examples from the bedding plant industry. Feed-forward artificial neural networks are used to segment top and side view images of three contrasting species of bedding plants. The segmented images provide objective measurements of leaf and flower...
Saved in:
Published in: | Biosystems engineering 2009-10, Vol.104 (2), p.161-168 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c465t-beb70b736df7244e9e94daf1b08472b3215a20906960245c23525817f4fe1a933 |
---|---|
cites | cdi_FETCH-LOGICAL-c465t-beb70b736df7244e9e94daf1b08472b3215a20906960245c23525817f4fe1a933 |
container_end_page | 168 |
container_issue | 2 |
container_start_page | 161 |
container_title | Biosystems engineering |
container_volume | 104 |
creator | Parsons, N.R. Edmondson, R.N. Song, Y. |
description | Image analysis for ornamental crops is discussed with examples from the bedding plant industry. Feed-forward artificial neural networks are used to segment top and side view images of three contrasting species of bedding plants. The segmented images provide objective measurements of leaf and flower cover, colour, uniformity and leaf canopy height. On each imaging occasion, each pack was scored for quality by an assessor panel and it is shown that image analysis can explain 88.5%, 81.7% and 70.4% of the panel quality scores for the three species, respectively. Stereoscopy for crop height and uniformity is outlined briefly. The methods discussed here could be used for crop grading at marketing or for monitoring and assessment of growing crops within a glasshouse during all stages of production. |
doi_str_mv | 10.1016/j.biosystemseng.2009.06.015 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34759445</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1537511009001950</els_id><sourcerecordid>34759445</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-beb70b736df7244e9e94daf1b08472b3215a20906960245c23525817f4fe1a933</originalsourceid><addsrcrecordid>eNqNkEFr3DAQhU1poWna31BBaW_rSrJkr-mphLQNBHpocxZje-Rosa2NRi7sKX-9s9kQyC0nPcT3Zt68ovikZKmkqr_uyi5EOlDGmXAZSy1lW8q6lMq-Ks6UrZqNVbp9_aSVfFu8I9pJJhpTnxX3VzOMKGCB6UCBWAyCMuRAOfQwiTkOOE1hGYWPScwItCaccckP5N0KU8gHAURI9PAdvYhpgaNm-21MPGedMrtEn-KeRFjEOLHhNq5sel-88TARfnh8z4ubH5d_L35trn__vLr4fr3pTW3zpsOukV1T1YNvtDHYYmsG8KqTW9PortLKgpatrNtaamN7XVltt6rxxqOCtqrOiy-nufsU71ak7OZAPZ8GC3IQV5nGtsZYBr-dQE5LlNC7fQozpINT0h1Ldzv3rHR3LN3J2nGl7P78uAaI6_MJlj7Q0witOZxVNXMfT5yH6GBMzNz80VJVvGBbSdkwcXkikFv5FzA56gMuPQ4hYZ_dEMOLEv0HMmSsjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>34759445</pqid></control><display><type>article</type><title>Image analysis and statistical modelling for measurement and quality assessment of ornamental horticulture crops in glasshouses</title><source>ScienceDirect Freedom Collection</source><creator>Parsons, N.R. ; Edmondson, R.N. ; Song, Y.</creator><creatorcontrib>Parsons, N.R. ; Edmondson, R.N. ; Song, Y.</creatorcontrib><description>Image analysis for ornamental crops is discussed with examples from the bedding plant industry. Feed-forward artificial neural networks are used to segment top and side view images of three contrasting species of bedding plants. The segmented images provide objective measurements of leaf and flower cover, colour, uniformity and leaf canopy height. On each imaging occasion, each pack was scored for quality by an assessor panel and it is shown that image analysis can explain 88.5%, 81.7% and 70.4% of the panel quality scores for the three species, respectively. Stereoscopy for crop height and uniformity is outlined briefly. The methods discussed here could be used for crop grading at marketing or for monitoring and assessment of growing crops within a glasshouse during all stages of production.</description><identifier>ISSN: 1537-5110</identifier><identifier>EISSN: 1537-5129</identifier><identifier>DOI: 10.1016/j.biosystemseng.2009.06.015</identifier><identifier>CODEN: BEINBJ</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Agricultural machinery and engineering ; Agronomy. Soil science and plant productions ; bedding plants ; Biological and medical sciences ; crop quality ; digital images ; Fundamental and applied biological sciences. Psychology ; Generalities. Biometrics, experimentation. Remote sensing ; greenhouse production ; greenhouses ; image analysis ; measurement ; neural networks ; ornamental plants ; plant morphology ; product grading ; quality control ; statistical models</subject><ispartof>Biosystems engineering, 2009-10, Vol.104 (2), p.161-168</ispartof><rights>2009 IAgrE</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-beb70b736df7244e9e94daf1b08472b3215a20906960245c23525817f4fe1a933</citedby><cites>FETCH-LOGICAL-c465t-beb70b736df7244e9e94daf1b08472b3215a20906960245c23525817f4fe1a933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22245516$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Parsons, N.R.</creatorcontrib><creatorcontrib>Edmondson, R.N.</creatorcontrib><creatorcontrib>Song, Y.</creatorcontrib><title>Image analysis and statistical modelling for measurement and quality assessment of ornamental horticulture crops in glasshouses</title><title>Biosystems engineering</title><description>Image analysis for ornamental crops is discussed with examples from the bedding plant industry. Feed-forward artificial neural networks are used to segment top and side view images of three contrasting species of bedding plants. The segmented images provide objective measurements of leaf and flower cover, colour, uniformity and leaf canopy height. On each imaging occasion, each pack was scored for quality by an assessor panel and it is shown that image analysis can explain 88.5%, 81.7% and 70.4% of the panel quality scores for the three species, respectively. Stereoscopy for crop height and uniformity is outlined briefly. The methods discussed here could be used for crop grading at marketing or for monitoring and assessment of growing crops within a glasshouse during all stages of production.</description><subject>Agricultural machinery and engineering</subject><subject>Agronomy. Soil science and plant productions</subject><subject>bedding plants</subject><subject>Biological and medical sciences</subject><subject>crop quality</subject><subject>digital images</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Generalities. Biometrics, experimentation. Remote sensing</subject><subject>greenhouse production</subject><subject>greenhouses</subject><subject>image analysis</subject><subject>measurement</subject><subject>neural networks</subject><subject>ornamental plants</subject><subject>plant morphology</subject><subject>product grading</subject><subject>quality control</subject><subject>statistical models</subject><issn>1537-5110</issn><issn>1537-5129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqNkEFr3DAQhU1poWna31BBaW_rSrJkr-mphLQNBHpocxZje-Rosa2NRi7sKX-9s9kQyC0nPcT3Zt68ovikZKmkqr_uyi5EOlDGmXAZSy1lW8q6lMq-Ks6UrZqNVbp9_aSVfFu8I9pJJhpTnxX3VzOMKGCB6UCBWAyCMuRAOfQwiTkOOE1hGYWPScwItCaccckP5N0KU8gHAURI9PAdvYhpgaNm-21MPGedMrtEn-KeRFjEOLHhNq5sel-88TARfnh8z4ubH5d_L35trn__vLr4fr3pTW3zpsOukV1T1YNvtDHYYmsG8KqTW9PortLKgpatrNtaamN7XVltt6rxxqOCtqrOiy-nufsU71ak7OZAPZ8GC3IQV5nGtsZYBr-dQE5LlNC7fQozpINT0h1Ldzv3rHR3LN3J2nGl7P78uAaI6_MJlj7Q0witOZxVNXMfT5yH6GBMzNz80VJVvGBbSdkwcXkikFv5FzA56gMuPQ4hYZ_dEMOLEv0HMmSsjw</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Parsons, N.R.</creator><creator>Edmondson, R.N.</creator><creator>Song, Y.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>FBQ</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20091001</creationdate><title>Image analysis and statistical modelling for measurement and quality assessment of ornamental horticulture crops in glasshouses</title><author>Parsons, N.R. ; Edmondson, R.N. ; Song, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-beb70b736df7244e9e94daf1b08472b3215a20906960245c23525817f4fe1a933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Agricultural machinery and engineering</topic><topic>Agronomy. Soil science and plant productions</topic><topic>bedding plants</topic><topic>Biological and medical sciences</topic><topic>crop quality</topic><topic>digital images</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Generalities. Biometrics, experimentation. Remote sensing</topic><topic>greenhouse production</topic><topic>greenhouses</topic><topic>image analysis</topic><topic>measurement</topic><topic>neural networks</topic><topic>ornamental plants</topic><topic>plant morphology</topic><topic>product grading</topic><topic>quality control</topic><topic>statistical models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Parsons, N.R.</creatorcontrib><creatorcontrib>Edmondson, R.N.</creatorcontrib><creatorcontrib>Song, Y.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Biosystems engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Parsons, N.R.</au><au>Edmondson, R.N.</au><au>Song, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Image analysis and statistical modelling for measurement and quality assessment of ornamental horticulture crops in glasshouses</atitle><jtitle>Biosystems engineering</jtitle><date>2009-10-01</date><risdate>2009</risdate><volume>104</volume><issue>2</issue><spage>161</spage><epage>168</epage><pages>161-168</pages><issn>1537-5110</issn><eissn>1537-5129</eissn><coden>BEINBJ</coden><abstract>Image analysis for ornamental crops is discussed with examples from the bedding plant industry. Feed-forward artificial neural networks are used to segment top and side view images of three contrasting species of bedding plants. The segmented images provide objective measurements of leaf and flower cover, colour, uniformity and leaf canopy height. On each imaging occasion, each pack was scored for quality by an assessor panel and it is shown that image analysis can explain 88.5%, 81.7% and 70.4% of the panel quality scores for the three species, respectively. Stereoscopy for crop height and uniformity is outlined briefly. The methods discussed here could be used for crop grading at marketing or for monitoring and assessment of growing crops within a glasshouse during all stages of production.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.biosystemseng.2009.06.015</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1537-5110 |
ispartof | Biosystems engineering, 2009-10, Vol.104 (2), p.161-168 |
issn | 1537-5110 1537-5129 |
language | eng |
recordid | cdi_proquest_miscellaneous_34759445 |
source | ScienceDirect Freedom Collection |
subjects | Agricultural machinery and engineering Agronomy. Soil science and plant productions bedding plants Biological and medical sciences crop quality digital images Fundamental and applied biological sciences. Psychology Generalities. Biometrics, experimentation. Remote sensing greenhouse production greenhouses image analysis measurement neural networks ornamental plants plant morphology product grading quality control statistical models |
title | Image analysis and statistical modelling for measurement and quality assessment of ornamental horticulture crops in glasshouses |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A32%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Image%20analysis%20and%20statistical%20modelling%20for%20measurement%20and%20quality%20assessment%20of%20ornamental%20horticulture%20crops%20in%20glasshouses&rft.jtitle=Biosystems%20engineering&rft.au=Parsons,%20N.R.&rft.date=2009-10-01&rft.volume=104&rft.issue=2&rft.spage=161&rft.epage=168&rft.pages=161-168&rft.issn=1537-5110&rft.eissn=1537-5129&rft.coden=BEINBJ&rft_id=info:doi/10.1016/j.biosystemseng.2009.06.015&rft_dat=%3Cproquest_cross%3E34759445%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-beb70b736df7244e9e94daf1b08472b3215a20906960245c23525817f4fe1a933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=34759445&rft_id=info:pmid/&rfr_iscdi=true |