Loading…
Measurement of the vortex core in sub-100 nm Fe dots using polarized neutron scattering
We use polarized neutron scattering to obtain quantitative information about the magnetic state of sub-100 nm circular magnetic dots. Evidence for the transition from a single domain to a vortex state, as a function of the dot diameter and magnetic field, is found from magnetization curves and confi...
Saved in:
Published in: | Europhysics letters 2009-06, Vol.86 (6), p.67008-67008P6 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We use polarized neutron scattering to obtain quantitative information about the magnetic state of sub-100 nm circular magnetic dots. Evidence for the transition from a single domain to a vortex state, as a function of the dot diameter and magnetic field, is found from magnetization curves and confirmed by micromagnetic and Monte-Carlo simulations. For 20 nm-thick Fe dots with diameters close to 60 nm, the vortex is the ground state. The magnetization of the vortex core (140 ± 50 emu/cm3) and its diameter (19 ± 4 nm) obtained from polarized neutron scattering are in agreement with simulations. |
---|---|
ISSN: | 0295-5075 1286-4854 |
DOI: | 10.1209/0295-5075/86/67008 |