Loading…

Effects of fretting fatigue on the residual stress of shot peened Ti–6Al–4V samples

X-ray diffraction residual stress measurement has been utilized as nondestructive tool for the characterization of fretting fatigue damage in shot peened samples of Ti–6Al–4V. Prior to fretting fatigue damage, compressive residual stresses were found to be uniform over the entire face of the sample...

Full description

Saved in:
Bibliographic Details
Published in:Materials science & engineering. A, Structural materials : properties, microstructure and processing Structural materials : properties, microstructure and processing, 2005-06, Vol.399 (1), p.58-63
Main Authors: Martinez, S.A., Sathish, S., Blodgett, M.P., Mall, S., Namjoshi, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:X-ray diffraction residual stress measurement has been utilized as nondestructive tool for the characterization of fretting fatigue damage in shot peened samples of Ti–6Al–4V. Prior to fretting fatigue damage, compressive residual stresses were found to be uniform over the entire face of the sample and independent of the measurement direction. After fretting fatigue, inside and in the vicinity of the fretting damage zone large relaxation of compressive residual stress was observed. An anisotropic residual stress distribution has been observed in the fretting fatigue damaged region. Residual stress measurements in interrupted fretting fatigue experiments showed that the relaxation of residual stress increases as the number of fretting fatigue cycles increase. The results are discussed in the light of their importance in establishing X-ray diffraction residual stress measurement technique as a nondestructive tool to characterize fretting fatigue damage.
ISSN:0921-5093
1873-4936
DOI:10.1016/j.msea.2005.02.028