Loading…

Soil geochemical signature of urbanization and industrialization – Chicago, Illinois, USA

The concentrations of 45 elements in ambient (not obviously disturbed) surface soils were determined for 57 sites distributed throughout the city of Chicago, Illinois in the upper Midwestern United States. These concentrations were compared to soils from 105 sites from a largely agricultural region...

Full description

Saved in:
Bibliographic Details
Published in:Applied geochemistry 2009-08, Vol.24 (8), p.1590-1601
Main Authors: Cannon, W.F., Horton, John D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The concentrations of 45 elements in ambient (not obviously disturbed) surface soils were determined for 57 sites distributed throughout the city of Chicago, Illinois in the upper Midwestern United States. These concentrations were compared to soils from 105 sites from a largely agricultural region within a 500-km radius surrounding the city and to soils collected from 90 sites across the state of Illinois. Although the bulk composition of the Chicago urban soils reflects largely natural sources, the soils are significantly enriched in many trace elements, apparently from anthropogenic sources. The median concentration of Pb in Chicago soils is 198 mg/kg, a 13-fold enrichment compared to regional concentrations. Zinc (median 235 mg/kg), Cu (59 mg/kg), and Ni (31 mg/kg) are also enriched from 2- to 4-fold in Chicago soils and all four elements show strong mutual correlations. These elevated concentrations are most likely related to vehicular and roadway sources and represent uneven distribution across the city as airborne material. Other airborne particulate material from a combination of fossil fuel combustion, waste incineration, and steel production may contribute to apparent elevated concentrations in Chicago soil of Fe (median 2.9%), Mo (5 mg/kg), V (82 mg/kg) and S (0.09%). Chicago soils are enriched from about 1.6- to 3-fold in these elements. Enrichments in P and Se may be caused by direct addition of phosphate fertilizer to parklands, lawns and gardens. The density of the sampling (1 site per 10 km 2) is inadequate to define the distribution of the observed enrichments within the city or to predict soil compositions for most of the areas between sample sites, but does provide a statistically significant signature of the history of urban and industrial activity within the city in contrast to the surrounding agricultural lands.
ISSN:0883-2927
1872-9134
DOI:10.1016/j.apgeochem.2009.04.023