Loading…
Synthesis and oxidation stability of monosized and monocrystalline Pr nanoparticles
This study reports the synthesis of monosized Pr nanoparticles with a controllable size ranging from 5 to 20 nm. Pr agglomerates generated by a spark generator first size-selected by a differential mobility analyzer and subsequently sintered in-flight at different temperatures result in spherical an...
Saved in:
Published in: | Journal of materials research 2009-07, Vol.24 (7), p.2276-2285 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This study reports the synthesis of monosized Pr nanoparticles with a controllable size ranging from 5 to 20 nm. Pr agglomerates generated by a spark generator first size-selected by a differential mobility analyzer and subsequently sintered in-flight at different temperatures result in spherical and monocrystalline Pr nanoparticles. The dependence of size and size distribution of Pr nanoparticles has been studied as a function of deposition parameters related to spark generator, differential mobility analyzer, and sintering. Transmission electron microscopy, energy-dispersive x-ray analysis, glancing angle x-ray diffraction, and x-ray photoelectron spectroscopy studies confirm that initial Pr agglomerates and the resulting nanoparticles are metallic with d-hexagonal structure and remain stable in air during post-deposition exposure. Incomplete or partially sintered nanoparticles were found to be oxidized, resulting in the formation of amorphous oxide phase due to enhanced oxidation at grain boundaries. |
---|---|
ISSN: | 0884-2914 2044-5326 |
DOI: | 10.1557/jmr.2009.0281 |