Loading…

Oxidative stress is an early symptom triggered by aluminum in Al-sensitive potato plantlets

The objective of this study was to evaluate whether the oxidative stress caused by aluminum (Al) toxicity is an early symptom that can trigger root growth inhibition in Macaca (Al-sensitive) and SMIC148-A (Al-tolerant) potato clones. Plantlets were grown in a nutrient solution (pH 4.00) with 0, 100...

Full description

Saved in:
Bibliographic Details
Published in:Chemosphere (Oxford) 2009-09, Vol.76 (10), p.1402-1409
Main Authors: Tabaldi, Luciane Almeri, Cargnelutti, Denise, Gonçalves, Jamile Fabbrin, Pereira, Luciane Belmonte, Castro, Gabriel Y, Maldaner, Joseila, Rauber, Renata, Rossato, Liana Verônica, Bisognin, Dilson Antônio, Schetinger, Maria Rosa Chitolina, Nicoloso, Fernando Teixeira
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objective of this study was to evaluate whether the oxidative stress caused by aluminum (Al) toxicity is an early symptom that can trigger root growth inhibition in Macaca (Al-sensitive) and SMIC148-A (Al-tolerant) potato clones. Plantlets were grown in a nutrient solution (pH 4.00) with 0, 100 and 200 mg Al L −1. At 24, 72, 120 and 168 h after Al addition, root length and biochemical parameters were determined. Regardless of exposure time, root length of the Macaca clone was significantly lower at 200 mg Al L −1. For the SMIC148-A clone, root length did not decrease with any Al treatments. Al supply caused lipid peroxidation only in Macaca, in both roots (at 24, 72, 120 and 168 h) and shoot (at 120 and 168 h). In roots of the Macaca, catalase (CAT) and ascorbate peroxidase (APX) activity decreased at 72 and 120 h, and at 24, 72 and 120 h, respectively. At 168 h, both activities increased upon addition of Al. In roots of the SMIC148-A, CAT activity increased at 72 and 168 h, whereas APX activity decreased at 72 h and increased at 24, 12 and 168 h. The Macaca showed lower root non-protein thiol group (NPSH) concentration at 200 mg Al L −1 in all evaluations, but the SMIC148-A either did not demonstrate any alterations at 24 and 72 h or presented higher levels at 120 h. This pattern was also observed in root ascorbic acid (AsA) concentration at 24 and 120 h. The cellular redox status of these potato clones seems to be affected by Al. Therefore, oxidative stress may be an important mechanism for Al toxicity, mainly in the Al-sensitive Macaca clone.
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2009.06.011