Loading…

Continuous electrolytic decarbonation and recovery of a carbonate salt solution from a metal-contaminated carbonate solution

This work studied the characteristic changes of a continuous electrolytic decarbonation and recovery of a carbonate salt solution from a metal-contaminated carbonate solution with changes of operational variables in an electrolytic system which consisted of a cell-stacked electrolyzer equipped with...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hazardous materials 2009-11, Vol.171 (1), p.606-612
Main Authors: Kim, Kwang-Wook, Kim, Yeon-Hwa, Lee, Se-Yoon, Lee, Eil-Hee, Song, Kyusuk, Song, Kee-Chan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c456t-807df7ab7f6e4033856a3ce14b4f01e3176f3223ef0e73b9e45fb9f0ef24c5ae3
cites cdi_FETCH-LOGICAL-c456t-807df7ab7f6e4033856a3ce14b4f01e3176f3223ef0e73b9e45fb9f0ef24c5ae3
container_end_page 612
container_issue 1
container_start_page 606
container_title Journal of hazardous materials
container_volume 171
creator Kim, Kwang-Wook
Kim, Yeon-Hwa
Lee, Se-Yoon
Lee, Eil-Hee
Song, Kyusuk
Song, Kee-Chan
description This work studied the characteristic changes of a continuous electrolytic decarbonation and recovery of a carbonate salt solution from a metal-contaminated carbonate solution with changes of operational variables in an electrolytic system which consisted of a cell-stacked electrolyzer equipped with a cation exchange membrane and a gas absorber. The system could completely recover the carbonate salt solution from a uranyl carbonato complex solution in a continuous operation. The cathodic feed rate could control the carbonate concentration of the recovered solution and it affected the most transient pH drop phenomenon of a well type within the gas absorber before a steady state was reached, which caused the possibility of a CO 2 gas slip from the gas absorber. The pH drop problem could be overcome by temporarily increasing the OH − concentration of the cathodic solution flowing down within the gas absorber only during the time required for a steady state to be obtained in the case without the addition of outside NaOH. An overshooting peak of the carbonate concentration in the recovered solution before a steady state was observed, which was ascribed to the decarbonation of the initial solution filled within the stacked cells by a redundant current leftover from the complete decarbonation of the feeding carbonate solution.
doi_str_mv 10.1016/j.jhazmat.2009.06.043
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34862940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304389409009649</els_id><sourcerecordid>308415360</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-807df7ab7f6e4033856a3ce14b4f01e3176f3223ef0e73b9e45fb9f0ef24c5ae3</originalsourceid><addsrcrecordid>eNqFkU2L3SAUhqV06NxO-xNa3LS7ZI7RmGRVyqVfMDCbdi3GHKkXE6dqBm7pjx9vb_qxGxBEzvMejz6EvGJQM2Dy-lAfvuufs851AzDUIGsQ_AnZsb7jFedcPiU74CAq3g_ikjxP6QAArGvFM3LJBglCCrYjv_ZhyW5Zw5ooejQ5Bn_MztAJjY5jWHR2YaF6mWhEE-4xHmmwVNM_VaRJ-0xT8Otv0sYwl_KMWfvKlOZ6dids-j-xwS_IhdU-4cttvyLfPn74uv9c3dx--rJ_f1MZ0cpc9dBNttNjZyUK4LxvpeYGmRiFBYacddLypuFoATs-DihaOw7lYBthWo38irw9972L4ceKKavZJYPe6wXLwxUXvWyG0voxsIG-LDEUsD2DJoaUIlp1F92s41ExUCc_6qA2P-rkR4FUxU_Jvd4uWMcZp3-pTUgB3myATkZ7G_ViXPrLNU3by7Y7DfDuzGH5t3uHUSXjcDE4ueIpqym4R0Z5ADIotGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20820849</pqid></control><display><type>article</type><title>Continuous electrolytic decarbonation and recovery of a carbonate salt solution from a metal-contaminated carbonate solution</title><source>ScienceDirect Freedom Collection</source><creator>Kim, Kwang-Wook ; Kim, Yeon-Hwa ; Lee, Se-Yoon ; Lee, Eil-Hee ; Song, Kyusuk ; Song, Kee-Chan</creator><creatorcontrib>Kim, Kwang-Wook ; Kim, Yeon-Hwa ; Lee, Se-Yoon ; Lee, Eil-Hee ; Song, Kyusuk ; Song, Kee-Chan</creatorcontrib><description>This work studied the characteristic changes of a continuous electrolytic decarbonation and recovery of a carbonate salt solution from a metal-contaminated carbonate solution with changes of operational variables in an electrolytic system which consisted of a cell-stacked electrolyzer equipped with a cation exchange membrane and a gas absorber. The system could completely recover the carbonate salt solution from a uranyl carbonato complex solution in a continuous operation. The cathodic feed rate could control the carbonate concentration of the recovered solution and it affected the most transient pH drop phenomenon of a well type within the gas absorber before a steady state was reached, which caused the possibility of a CO 2 gas slip from the gas absorber. The pH drop problem could be overcome by temporarily increasing the OH − concentration of the cathodic solution flowing down within the gas absorber only during the time required for a steady state to be obtained in the case without the addition of outside NaOH. An overshooting peak of the carbonate concentration in the recovered solution before a steady state was observed, which was ascribed to the decarbonation of the initial solution filled within the stacked cells by a redundant current leftover from the complete decarbonation of the feeding carbonate solution.</description><identifier>ISSN: 0304-3894</identifier><identifier>EISSN: 1873-3336</identifier><identifier>DOI: 10.1016/j.jhazmat.2009.06.043</identifier><identifier>PMID: 19604641</identifier><identifier>CODEN: JHMAD9</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Adsorption ; Applied sciences ; Carbon - chemistry ; Carbon dioxide ; Carbon Dioxide - chemistry ; Carbonates ; Carbonates - chemistry ; Cations ; Chemical engineering ; Continuous ; Decarbonation ; Electrochemistry - methods ; Electrolytic ; Exact sciences and technology ; Feeding ; Gases ; Hydrogen-Ion Concentration ; Hydroxides - chemistry ; Ion exchange ; Metals - chemistry ; Models, Chemical ; Pollution ; Recovery ; Salt solutions ; Salts - chemistry ; Sodium Hydroxide - chemistry ; Stacked-cell ; Steady state ; Water Pollutants, Chemical - analysis ; Water Purification - methods</subject><ispartof>Journal of hazardous materials, 2009-11, Vol.171 (1), p.606-612</ispartof><rights>2009 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-807df7ab7f6e4033856a3ce14b4f01e3176f3223ef0e73b9e45fb9f0ef24c5ae3</citedby><cites>FETCH-LOGICAL-c456t-807df7ab7f6e4033856a3ce14b4f01e3176f3223ef0e73b9e45fb9f0ef24c5ae3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22586579$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19604641$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Kwang-Wook</creatorcontrib><creatorcontrib>Kim, Yeon-Hwa</creatorcontrib><creatorcontrib>Lee, Se-Yoon</creatorcontrib><creatorcontrib>Lee, Eil-Hee</creatorcontrib><creatorcontrib>Song, Kyusuk</creatorcontrib><creatorcontrib>Song, Kee-Chan</creatorcontrib><title>Continuous electrolytic decarbonation and recovery of a carbonate salt solution from a metal-contaminated carbonate solution</title><title>Journal of hazardous materials</title><addtitle>J Hazard Mater</addtitle><description>This work studied the characteristic changes of a continuous electrolytic decarbonation and recovery of a carbonate salt solution from a metal-contaminated carbonate solution with changes of operational variables in an electrolytic system which consisted of a cell-stacked electrolyzer equipped with a cation exchange membrane and a gas absorber. The system could completely recover the carbonate salt solution from a uranyl carbonato complex solution in a continuous operation. The cathodic feed rate could control the carbonate concentration of the recovered solution and it affected the most transient pH drop phenomenon of a well type within the gas absorber before a steady state was reached, which caused the possibility of a CO 2 gas slip from the gas absorber. The pH drop problem could be overcome by temporarily increasing the OH − concentration of the cathodic solution flowing down within the gas absorber only during the time required for a steady state to be obtained in the case without the addition of outside NaOH. An overshooting peak of the carbonate concentration in the recovered solution before a steady state was observed, which was ascribed to the decarbonation of the initial solution filled within the stacked cells by a redundant current leftover from the complete decarbonation of the feeding carbonate solution.</description><subject>Adsorption</subject><subject>Applied sciences</subject><subject>Carbon - chemistry</subject><subject>Carbon dioxide</subject><subject>Carbon Dioxide - chemistry</subject><subject>Carbonates</subject><subject>Carbonates - chemistry</subject><subject>Cations</subject><subject>Chemical engineering</subject><subject>Continuous</subject><subject>Decarbonation</subject><subject>Electrochemistry - methods</subject><subject>Electrolytic</subject><subject>Exact sciences and technology</subject><subject>Feeding</subject><subject>Gases</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydroxides - chemistry</subject><subject>Ion exchange</subject><subject>Metals - chemistry</subject><subject>Models, Chemical</subject><subject>Pollution</subject><subject>Recovery</subject><subject>Salt solutions</subject><subject>Salts - chemistry</subject><subject>Sodium Hydroxide - chemistry</subject><subject>Stacked-cell</subject><subject>Steady state</subject><subject>Water Pollutants, Chemical - analysis</subject><subject>Water Purification - methods</subject><issn>0304-3894</issn><issn>1873-3336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkU2L3SAUhqV06NxO-xNa3LS7ZI7RmGRVyqVfMDCbdi3GHKkXE6dqBm7pjx9vb_qxGxBEzvMejz6EvGJQM2Dy-lAfvuufs851AzDUIGsQ_AnZsb7jFedcPiU74CAq3g_ikjxP6QAArGvFM3LJBglCCrYjv_ZhyW5Zw5ooejQ5Bn_MztAJjY5jWHR2YaF6mWhEE-4xHmmwVNM_VaRJ-0xT8Otv0sYwl_KMWfvKlOZ6dids-j-xwS_IhdU-4cttvyLfPn74uv9c3dx--rJ_f1MZ0cpc9dBNttNjZyUK4LxvpeYGmRiFBYacddLypuFoATs-DihaOw7lYBthWo38irw9972L4ceKKavZJYPe6wXLwxUXvWyG0voxsIG-LDEUsD2DJoaUIlp1F92s41ExUCc_6qA2P-rkR4FUxU_Jvd4uWMcZp3-pTUgB3myATkZ7G_ViXPrLNU3by7Y7DfDuzGH5t3uHUSXjcDE4ueIpqym4R0Z5ADIotGA</recordid><startdate>20091115</startdate><enddate>20091115</enddate><creator>Kim, Kwang-Wook</creator><creator>Kim, Yeon-Hwa</creator><creator>Lee, Se-Yoon</creator><creator>Lee, Eil-Hee</creator><creator>Song, Kyusuk</creator><creator>Song, Kee-Chan</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U7</scope><scope>C1K</scope><scope>SOI</scope><scope>7SU</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20091115</creationdate><title>Continuous electrolytic decarbonation and recovery of a carbonate salt solution from a metal-contaminated carbonate solution</title><author>Kim, Kwang-Wook ; Kim, Yeon-Hwa ; Lee, Se-Yoon ; Lee, Eil-Hee ; Song, Kyusuk ; Song, Kee-Chan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-807df7ab7f6e4033856a3ce14b4f01e3176f3223ef0e73b9e45fb9f0ef24c5ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adsorption</topic><topic>Applied sciences</topic><topic>Carbon - chemistry</topic><topic>Carbon dioxide</topic><topic>Carbon Dioxide - chemistry</topic><topic>Carbonates</topic><topic>Carbonates - chemistry</topic><topic>Cations</topic><topic>Chemical engineering</topic><topic>Continuous</topic><topic>Decarbonation</topic><topic>Electrochemistry - methods</topic><topic>Electrolytic</topic><topic>Exact sciences and technology</topic><topic>Feeding</topic><topic>Gases</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydroxides - chemistry</topic><topic>Ion exchange</topic><topic>Metals - chemistry</topic><topic>Models, Chemical</topic><topic>Pollution</topic><topic>Recovery</topic><topic>Salt solutions</topic><topic>Salts - chemistry</topic><topic>Sodium Hydroxide - chemistry</topic><topic>Stacked-cell</topic><topic>Steady state</topic><topic>Water Pollutants, Chemical - analysis</topic><topic>Water Purification - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Kwang-Wook</creatorcontrib><creatorcontrib>Kim, Yeon-Hwa</creatorcontrib><creatorcontrib>Lee, Se-Yoon</creatorcontrib><creatorcontrib>Lee, Eil-Hee</creatorcontrib><creatorcontrib>Song, Kyusuk</creatorcontrib><creatorcontrib>Song, Kee-Chan</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of hazardous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Kwang-Wook</au><au>Kim, Yeon-Hwa</au><au>Lee, Se-Yoon</au><au>Lee, Eil-Hee</au><au>Song, Kyusuk</au><au>Song, Kee-Chan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous electrolytic decarbonation and recovery of a carbonate salt solution from a metal-contaminated carbonate solution</atitle><jtitle>Journal of hazardous materials</jtitle><addtitle>J Hazard Mater</addtitle><date>2009-11-15</date><risdate>2009</risdate><volume>171</volume><issue>1</issue><spage>606</spage><epage>612</epage><pages>606-612</pages><issn>0304-3894</issn><eissn>1873-3336</eissn><coden>JHMAD9</coden><abstract>This work studied the characteristic changes of a continuous electrolytic decarbonation and recovery of a carbonate salt solution from a metal-contaminated carbonate solution with changes of operational variables in an electrolytic system which consisted of a cell-stacked electrolyzer equipped with a cation exchange membrane and a gas absorber. The system could completely recover the carbonate salt solution from a uranyl carbonato complex solution in a continuous operation. The cathodic feed rate could control the carbonate concentration of the recovered solution and it affected the most transient pH drop phenomenon of a well type within the gas absorber before a steady state was reached, which caused the possibility of a CO 2 gas slip from the gas absorber. The pH drop problem could be overcome by temporarily increasing the OH − concentration of the cathodic solution flowing down within the gas absorber only during the time required for a steady state to be obtained in the case without the addition of outside NaOH. An overshooting peak of the carbonate concentration in the recovered solution before a steady state was observed, which was ascribed to the decarbonation of the initial solution filled within the stacked cells by a redundant current leftover from the complete decarbonation of the feeding carbonate solution.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>19604641</pmid><doi>10.1016/j.jhazmat.2009.06.043</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-3894
ispartof Journal of hazardous materials, 2009-11, Vol.171 (1), p.606-612
issn 0304-3894
1873-3336
language eng
recordid cdi_proquest_miscellaneous_34862940
source ScienceDirect Freedom Collection
subjects Adsorption
Applied sciences
Carbon - chemistry
Carbon dioxide
Carbon Dioxide - chemistry
Carbonates
Carbonates - chemistry
Cations
Chemical engineering
Continuous
Decarbonation
Electrochemistry - methods
Electrolytic
Exact sciences and technology
Feeding
Gases
Hydrogen-Ion Concentration
Hydroxides - chemistry
Ion exchange
Metals - chemistry
Models, Chemical
Pollution
Recovery
Salt solutions
Salts - chemistry
Sodium Hydroxide - chemistry
Stacked-cell
Steady state
Water Pollutants, Chemical - analysis
Water Purification - methods
title Continuous electrolytic decarbonation and recovery of a carbonate salt solution from a metal-contaminated carbonate solution
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A39%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20electrolytic%20decarbonation%20and%20recovery%20of%20a%20carbonate%20salt%20solution%20from%20a%20metal-contaminated%20carbonate%20solution&rft.jtitle=Journal%20of%20hazardous%20materials&rft.au=Kim,%20Kwang-Wook&rft.date=2009-11-15&rft.volume=171&rft.issue=1&rft.spage=606&rft.epage=612&rft.pages=606-612&rft.issn=0304-3894&rft.eissn=1873-3336&rft.coden=JHMAD9&rft_id=info:doi/10.1016/j.jhazmat.2009.06.043&rft_dat=%3Cproquest_cross%3E308415360%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c456t-807df7ab7f6e4033856a3ce14b4f01e3176f3223ef0e73b9e45fb9f0ef24c5ae3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20820849&rft_id=info:pmid/19604641&rfr_iscdi=true