Loading…
Fitting of stochastic telecommunication network models via distance measures and Monte–Carlo tests
We explore real telecommunication data describing the spatial geometrical structure of an urban region and we propose a model fitting procedure, where a given choice of different non-iterated and iterated tessellation models is considered and fitted to real data. This model fitting procedure is base...
Saved in:
Published in: | Telecommunication systems 2006-04, Vol.31 (4), p.353-377 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We explore real telecommunication data describing the spatial geometrical structure of an urban region and we propose a model fitting procedure, where a given choice of different non-iterated and iterated tessellation models is considered and fitted to real data. This model fitting procedure is based on a comparison of distances between characteristics of sample data sets and characteristics of different tessellation models by utilizing a chosen metric. Examples of such characteristics are the mean length of the edge-set or the mean number of vertices per unit area. In particular, after a short review of a stochastic-geometric telecommunication model and a detailed description of the model fitting algorithm, we verify the algorithm by using simulated test data and subsequently apply the procedure to infrastructure data of Paris. |
---|---|
ISSN: | 1018-4864 1572-9451 |
DOI: | 10.1007/s11235-006-6723-3 |