Loading…

Full-field tomography and Kalman tracking of the range-dependent sound speed field in a coastal water environment

The monitoring, assessment and prediction of dynamic processes in shallow water constitute an attractive challenge. The availability of targeted observations enable high-resolution ocean forecasting to develop the 4D environmental picture. In particular, range-resolving acoustic tomography data cons...

Full description

Saved in:
Bibliographic Details
Published in:Journal of marine systems 2009-11, Vol.78, p.S382-S392
Main Authors: Carrière, Olivier, Hermand, Jean-Pierre, Le Gac, Jean-Claude, Rixen, Michel
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c404t-1640f69be3b699d8455f25b2d6d338cdcf5015eba5e3173c8cc350f6d8c94f6f3
cites cdi_FETCH-LOGICAL-c404t-1640f69be3b699d8455f25b2d6d338cdcf5015eba5e3173c8cc350f6d8c94f6f3
container_end_page S392
container_issue
container_start_page S382
container_title Journal of marine systems
container_volume 78
creator Carrière, Olivier
Hermand, Jean-Pierre
Le Gac, Jean-Claude
Rixen, Michel
description The monitoring, assessment and prediction of dynamic processes in shallow water constitute an attractive challenge. The availability of targeted observations enable high-resolution ocean forecasting to develop the 4D environmental picture. In particular, range-resolving acoustic tomography data constitute an effective way to reduce the non-uniform distribution and sparsity of standard hydrographic observations. In this paper a Kalman filtering scheme is investigated for tracking the time variations of a range-dependent sound-speed field in a vertical slice of a shallow water environment from full-field acoustic data and a propagation model taking into account the acoustic properties of the seafloor and subseafloor. The basic measurement setup for each radial of a tomography system consists of a broadband, multifrequency sound source and a vertical receiver array spanning most of the water column. The state variables represent the main features of the sound-speed field in a low dimensional parameterization scheme using empirical orthogonal functions. To test the algorithm acoustic data are synthesized from ocean model predictions obtained in support of the MREA/BP07 experiment southeast of the island of Elba, Italy. Bottom geoacoustic parameters obtained from previous acoustic inversion experiments are input to a normal mode propagation model as a background dataset. Additional data such as sea-surface temperature data from satellite or in situ hydrographic observations provide a priori approximate information about the range dependency of the subsurface structure and an estimation of the sea-surface sound speed. The evolution of the entire sound-speed field in the vertical slice is then sequentially estimated by the inversion processor. The results show that the daily space and time variations of the simulated sound-speed field can be effectively tracked with an extended Kalman filter. The depth-integrated sound-speed error (RMS) remains lower than 0.3 m/s (0.09 °C) when the benchmark environment is completely determined in the parameter space and lower than 0.7 m/s (0.22 °C) for an approximate environment parameterization.
doi_str_mv 10.1016/j.jmarsys.2009.01.036
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_34867510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0924796309001663</els_id><sourcerecordid>34867510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-1640f69be3b699d8455f25b2d6d338cdcf5015eba5e3173c8cc350f6d8c94f6f3</originalsourceid><addsrcrecordid>eNqFkUFvFCEYhomxiWvtT2jCyXiZ8WMYmJmTMY1VYxMv9kxY-NiyzsAU2Db772WzPdsTl-d584WHkGsGLQMmP-_b_aJTPua2A5haYC1w-YZs2DhMDRMDf0s2MHV9M0ySvyPvc94DgGSj2JDH28M8N87jbGmJS9wlvT4cqQ6W_tLzogMtSZu_PuxodLQ8IE067LCxuGKwGArN8VDhvCJaet7xgWpqos5Fz_RZF0wUw5NPMSxV-EAunJ4zXr28l-T-9tufmx_N3e_vP2--3jWmh740TPbg5LRFvpXTZMdeCNeJbWel5Xw01jgBTOBWC-Rs4GY0hotq2NFMvZOOX5KP5901xccD5qIWnw3Osw4YD1nxfpSDYPAq2DEYoJcn8NN_QTbANIy8nlFRcUZNijkndGpNvkY6KgbqFE3t1Us0dYqmgKkarXpfzh7Wn3nymFQ2HoNB6xOaomz0ryz8A7i5pGg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709783350</pqid></control><display><type>article</type><title>Full-field tomography and Kalman tracking of the range-dependent sound speed field in a coastal water environment</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Carrière, Olivier ; Hermand, Jean-Pierre ; Le Gac, Jean-Claude ; Rixen, Michel</creator><creatorcontrib>Carrière, Olivier ; Hermand, Jean-Pierre ; Le Gac, Jean-Claude ; Rixen, Michel</creatorcontrib><description>The monitoring, assessment and prediction of dynamic processes in shallow water constitute an attractive challenge. The availability of targeted observations enable high-resolution ocean forecasting to develop the 4D environmental picture. In particular, range-resolving acoustic tomography data constitute an effective way to reduce the non-uniform distribution and sparsity of standard hydrographic observations. In this paper a Kalman filtering scheme is investigated for tracking the time variations of a range-dependent sound-speed field in a vertical slice of a shallow water environment from full-field acoustic data and a propagation model taking into account the acoustic properties of the seafloor and subseafloor. The basic measurement setup for each radial of a tomography system consists of a broadband, multifrequency sound source and a vertical receiver array spanning most of the water column. The state variables represent the main features of the sound-speed field in a low dimensional parameterization scheme using empirical orthogonal functions. To test the algorithm acoustic data are synthesized from ocean model predictions obtained in support of the MREA/BP07 experiment southeast of the island of Elba, Italy. Bottom geoacoustic parameters obtained from previous acoustic inversion experiments are input to a normal mode propagation model as a background dataset. Additional data such as sea-surface temperature data from satellite or in situ hydrographic observations provide a priori approximate information about the range dependency of the subsurface structure and an estimation of the sea-surface sound speed. The evolution of the entire sound-speed field in the vertical slice is then sequentially estimated by the inversion processor. The results show that the daily space and time variations of the simulated sound-speed field can be effectively tracked with an extended Kalman filter. The depth-integrated sound-speed error (RMS) remains lower than 0.3 m/s (0.09 °C) when the benchmark environment is completely determined in the parameter space and lower than 0.7 m/s (0.22 °C) for an approximate environment parameterization.</description><identifier>ISSN: 0924-7963</identifier><identifier>EISSN: 1879-1573</identifier><identifier>DOI: 10.1016/j.jmarsys.2009.01.036</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Acoustic inversion ; Acoustics ; Approximation ; Data assimilation ; Inversions ; Kalman filter ; Marine ; Mathematical models ; Parametrization ; Shallow water ; Sound ; Tomography</subject><ispartof>Journal of marine systems, 2009-11, Vol.78, p.S382-S392</ispartof><rights>2009 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-1640f69be3b699d8455f25b2d6d338cdcf5015eba5e3173c8cc350f6d8c94f6f3</citedby><cites>FETCH-LOGICAL-c404t-1640f69be3b699d8455f25b2d6d338cdcf5015eba5e3173c8cc350f6d8c94f6f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Carrière, Olivier</creatorcontrib><creatorcontrib>Hermand, Jean-Pierre</creatorcontrib><creatorcontrib>Le Gac, Jean-Claude</creatorcontrib><creatorcontrib>Rixen, Michel</creatorcontrib><title>Full-field tomography and Kalman tracking of the range-dependent sound speed field in a coastal water environment</title><title>Journal of marine systems</title><description>The monitoring, assessment and prediction of dynamic processes in shallow water constitute an attractive challenge. The availability of targeted observations enable high-resolution ocean forecasting to develop the 4D environmental picture. In particular, range-resolving acoustic tomography data constitute an effective way to reduce the non-uniform distribution and sparsity of standard hydrographic observations. In this paper a Kalman filtering scheme is investigated for tracking the time variations of a range-dependent sound-speed field in a vertical slice of a shallow water environment from full-field acoustic data and a propagation model taking into account the acoustic properties of the seafloor and subseafloor. The basic measurement setup for each radial of a tomography system consists of a broadband, multifrequency sound source and a vertical receiver array spanning most of the water column. The state variables represent the main features of the sound-speed field in a low dimensional parameterization scheme using empirical orthogonal functions. To test the algorithm acoustic data are synthesized from ocean model predictions obtained in support of the MREA/BP07 experiment southeast of the island of Elba, Italy. Bottom geoacoustic parameters obtained from previous acoustic inversion experiments are input to a normal mode propagation model as a background dataset. Additional data such as sea-surface temperature data from satellite or in situ hydrographic observations provide a priori approximate information about the range dependency of the subsurface structure and an estimation of the sea-surface sound speed. The evolution of the entire sound-speed field in the vertical slice is then sequentially estimated by the inversion processor. The results show that the daily space and time variations of the simulated sound-speed field can be effectively tracked with an extended Kalman filter. The depth-integrated sound-speed error (RMS) remains lower than 0.3 m/s (0.09 °C) when the benchmark environment is completely determined in the parameter space and lower than 0.7 m/s (0.22 °C) for an approximate environment parameterization.</description><subject>Acoustic inversion</subject><subject>Acoustics</subject><subject>Approximation</subject><subject>Data assimilation</subject><subject>Inversions</subject><subject>Kalman filter</subject><subject>Marine</subject><subject>Mathematical models</subject><subject>Parametrization</subject><subject>Shallow water</subject><subject>Sound</subject><subject>Tomography</subject><issn>0924-7963</issn><issn>1879-1573</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkUFvFCEYhomxiWvtT2jCyXiZ8WMYmJmTMY1VYxMv9kxY-NiyzsAU2Db772WzPdsTl-d584WHkGsGLQMmP-_b_aJTPua2A5haYC1w-YZs2DhMDRMDf0s2MHV9M0ySvyPvc94DgGSj2JDH28M8N87jbGmJS9wlvT4cqQ6W_tLzogMtSZu_PuxodLQ8IE067LCxuGKwGArN8VDhvCJaet7xgWpqos5Fz_RZF0wUw5NPMSxV-EAunJ4zXr28l-T-9tufmx_N3e_vP2--3jWmh740TPbg5LRFvpXTZMdeCNeJbWel5Xw01jgBTOBWC-Rs4GY0hotq2NFMvZOOX5KP5901xccD5qIWnw3Osw4YD1nxfpSDYPAq2DEYoJcn8NN_QTbANIy8nlFRcUZNijkndGpNvkY6KgbqFE3t1Us0dYqmgKkarXpfzh7Wn3nymFQ2HoNB6xOaomz0ryz8A7i5pGg</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Carrière, Olivier</creator><creator>Hermand, Jean-Pierre</creator><creator>Le Gac, Jean-Claude</creator><creator>Rixen, Michel</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>7ST</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>20091101</creationdate><title>Full-field tomography and Kalman tracking of the range-dependent sound speed field in a coastal water environment</title><author>Carrière, Olivier ; Hermand, Jean-Pierre ; Le Gac, Jean-Claude ; Rixen, Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-1640f69be3b699d8455f25b2d6d338cdcf5015eba5e3173c8cc350f6d8c94f6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acoustic inversion</topic><topic>Acoustics</topic><topic>Approximation</topic><topic>Data assimilation</topic><topic>Inversions</topic><topic>Kalman filter</topic><topic>Marine</topic><topic>Mathematical models</topic><topic>Parametrization</topic><topic>Shallow water</topic><topic>Sound</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Carrière, Olivier</creatorcontrib><creatorcontrib>Hermand, Jean-Pierre</creatorcontrib><creatorcontrib>Le Gac, Jean-Claude</creatorcontrib><creatorcontrib>Rixen, Michel</creatorcontrib><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Journal of marine systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Carrière, Olivier</au><au>Hermand, Jean-Pierre</au><au>Le Gac, Jean-Claude</au><au>Rixen, Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Full-field tomography and Kalman tracking of the range-dependent sound speed field in a coastal water environment</atitle><jtitle>Journal of marine systems</jtitle><date>2009-11-01</date><risdate>2009</risdate><volume>78</volume><spage>S382</spage><epage>S392</epage><pages>S382-S392</pages><issn>0924-7963</issn><eissn>1879-1573</eissn><abstract>The monitoring, assessment and prediction of dynamic processes in shallow water constitute an attractive challenge. The availability of targeted observations enable high-resolution ocean forecasting to develop the 4D environmental picture. In particular, range-resolving acoustic tomography data constitute an effective way to reduce the non-uniform distribution and sparsity of standard hydrographic observations. In this paper a Kalman filtering scheme is investigated for tracking the time variations of a range-dependent sound-speed field in a vertical slice of a shallow water environment from full-field acoustic data and a propagation model taking into account the acoustic properties of the seafloor and subseafloor. The basic measurement setup for each radial of a tomography system consists of a broadband, multifrequency sound source and a vertical receiver array spanning most of the water column. The state variables represent the main features of the sound-speed field in a low dimensional parameterization scheme using empirical orthogonal functions. To test the algorithm acoustic data are synthesized from ocean model predictions obtained in support of the MREA/BP07 experiment southeast of the island of Elba, Italy. Bottom geoacoustic parameters obtained from previous acoustic inversion experiments are input to a normal mode propagation model as a background dataset. Additional data such as sea-surface temperature data from satellite or in situ hydrographic observations provide a priori approximate information about the range dependency of the subsurface structure and an estimation of the sea-surface sound speed. The evolution of the entire sound-speed field in the vertical slice is then sequentially estimated by the inversion processor. The results show that the daily space and time variations of the simulated sound-speed field can be effectively tracked with an extended Kalman filter. The depth-integrated sound-speed error (RMS) remains lower than 0.3 m/s (0.09 °C) when the benchmark environment is completely determined in the parameter space and lower than 0.7 m/s (0.22 °C) for an approximate environment parameterization.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jmarsys.2009.01.036</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0924-7963
ispartof Journal of marine systems, 2009-11, Vol.78, p.S382-S392
issn 0924-7963
1879-1573
language eng
recordid cdi_proquest_miscellaneous_34867510
source ScienceDirect Freedom Collection 2022-2024
subjects Acoustic inversion
Acoustics
Approximation
Data assimilation
Inversions
Kalman filter
Marine
Mathematical models
Parametrization
Shallow water
Sound
Tomography
title Full-field tomography and Kalman tracking of the range-dependent sound speed field in a coastal water environment
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A24%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Full-field%20tomography%20and%20Kalman%20tracking%20of%20the%20range-dependent%20sound%20speed%20field%20in%20a%20coastal%20water%20environment&rft.jtitle=Journal%20of%20marine%20systems&rft.au=Carri%C3%A8re,%20Olivier&rft.date=2009-11-01&rft.volume=78&rft.spage=S382&rft.epage=S392&rft.pages=S382-S392&rft.issn=0924-7963&rft.eissn=1879-1573&rft_id=info:doi/10.1016/j.jmarsys.2009.01.036&rft_dat=%3Cproquest_cross%3E34867510%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-1640f69be3b699d8455f25b2d6d338cdcf5015eba5e3173c8cc350f6d8c94f6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1709783350&rft_id=info:pmid/&rfr_iscdi=true