Loading…
A generalization of column generation to accelerate convergence
This paper proposes a generalization of column generation, reformulating the master problem with fewer variables at the expense of adding more constraints; the sub-problem structure does not change. It shows both analytically and computationally that the reformulation promotes faster convergence to...
Saved in:
Published in: | Mathematical programming 2010-04, Vol.122 (2), p.349-378 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper proposes a generalization of column generation, reformulating the master problem with fewer variables at the expense of adding more constraints; the sub-problem structure does not change. It shows both analytically and computationally that the reformulation promotes faster convergence to an optimal solution in application to a linear program and to the relaxation of an integer program at each node in the branch-and-bound tree. Further, it shows that this reformulation subsumes and generalizes prior approaches that have been shown to improve the rate of convergence in special cases. |
---|---|
ISSN: | 0025-5610 1436-4646 |
DOI: | 10.1007/s10107-008-0251-8 |